论文标题
5DPoincaré-Einstein空间的最小超曲面的重新归一化区域
Renormalized Area for Minimal Hypersurfaces of 5D Poincaré-Einstein Spaces
论文作者
论文摘要
在本文中,我们为Graham-Witten的最小超曲面重新归一化的面积提供了一个高斯 - 骨网公式。我们得出的公式以刻度标量riemannian不变性的积分来表示重新归一化的区域。我们还证明了一个结果,可以在无穷大的保形几何形状方面具有$ l^2 $ second基本形式的最小超曲面的特征。
In this paper we derive a Gauss-Bonnet formula for the renormalized area of Graham-Witten minimal hypersurfaces of 5-dimensional Poincaré-Einstein spaces. The formula we derive expresses the renormalized area in terms of integrals of pointwise scalar Riemannian invariants. We also prove a result which gives a characterization of minimal hypersurfaces with $L^2$ second fundamental form in terms of conformal geometry at infinity.