论文标题

六角形晶格的相对论紧密结合模型:应用石墨烯

Relativistic Tight-Binding Model for Hexagonal Lattice: Application to Graphene

论文作者

Sharma, Rohin, Shrestha, Amit, Higuchi, Masahiko, Higuchi, Katsuhiko, Hamal, Dipendra B.

论文摘要

2015年开发了适用于浸入磁场的结晶材料的非扰动相对论紧密结合方法(TB)近似方法。要将这种方法应用于磁场中的任何材料,必须计算出在没有磁场的情况下材料的电子结构。在这项研究中,我们介绍了零磁场中石墨烯的相对论结核近似方法。考虑到$ s $和$ p $ p $ valence轨道之间最近的相邻原子相互作用,在其中构建了哈密顿量和重叠矩阵,其中相对论跳跃和重叠积分是使用Slater-koster表的相对论版本计算的。本文介绍了构建哈密顿量和重叠基质的方法以及第一个布里鲁因区域中石墨烯的能量带结构。发现在$ \ textbf {k} $点(也称为旋转轨道间隙)上出现一个小的带隙,这是由于相对论效应,其幅度为$ 25 $ $ $ $ $ ev。

A non-perturbative relativistic tight-binding (TB) approximation method applicable to crystalline material immersed in a magnetic field was developed in 2015. To apply this method to any material in the magnetic field, the electronic structure of the material in absence of a magnetic field must be calculated. In this study, we present the relativistic TB approximation method for graphene in a zero magnetic field. The Hamiltonian and overlap matrix is constructed considering the nearest neighbouring atomic interactions between the $s$ and $p$ valence orbitals, where the relativistic hopping and overlap integrals are calculated using the relativistic version of the Slater-Koster table. The method of constructing the Hamiltonian and overlap matrix and the resulting energy-band structure of graphene in the first Brillouin zone is presented in this paper. It is found that there is an appearance of a small band-gap at the $\textbf{K}$ points (also known as the spin-orbit gap) due to the relativistic effect, whose magnitude is $25$ $μ$eV.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源