论文标题

切片网络中基于测量的入院控制:最佳的ARM识别方法

Measurement-based Admission Control in Sliced Networks: A Best Arm Identification Approach

论文作者

Lindståhl, Simon, Proutiere, Alexandre, Johnsson, Andreas

论文摘要

在切片网络中,切片的共享租约需要基于网络资源的测量来对数据流进行自适应录取控制。在本文中,我们研究了基于测量的入院控制方案的设计,决定是否可以接收新的数据流,在这种情况下,在哪个切片上。目的是设计一种联合度量和决策策略,该策略以一定程度的信心返回正确的决策(例如,负载最少的切片),同时最大程度地减少测量成本(提交决策之前进行的测量数量)。我们研究了一些自然入学标准的此类策略的设计,以指定正确的决定是什么。对于这些标准中的每一个,使用匪徒中最佳手臂识别的工具,我们首先根据任何算法的成本来得出明确的信息理论下限,以固定的信心返回正确的决定。然后,我们制定了达到这一理论限制的联合测量和决策策略。我们从经验上比较了这些策略的测量成本,并将其与下限以及幼稚的测量方案进行了比较。我们发现我们的算法明显优于天真的计划(因子$ 2-8 $)。

In sliced networks, the shared tenancy of slices requires adaptive admission control of data flows, based on measurements of network resources. In this paper, we investigate the design of measurement-based admission control schemes, deciding whether a new data flow can be admitted and in this case, on which slice. The objective is to devise a joint measurement and decision strategy that returns a correct decision (e.g., the least loaded slice) with a certain level of confidence while minimizing the measurement cost (the number of measurements made before committing to the decision). We study the design of such strategies for several natural admission criteria specifying what a correct decision is. For each of these criteria, using tools from best arm identification in bandits, we first derive an explicit information-theoretical lower bound on the cost of any algorithm returning the correct decision with fixed confidence. We then devise a joint measurement and decision strategy achieving this theoretical limit. We compare empirically the measurement costs of these strategies, and compare them both to the lower bounds as well as a naive measurement scheme. We find that our algorithm significantly outperforms the naive scheme (by a factor $2-8$).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源