论文标题

具有连续轮廓的行进波,用于双曲线凯勒 - 塞格方程

Traveling waves with continuous profile for hyperbolic Keller-Segel equation

论文作者

Griette, Quentin, Magal, Pierre, Zhao, Min

论文摘要

这项工作描述了具有种群动力学的细胞细胞排斥的双曲线模型。我们考虑细胞群产生的压力来描述其运动。我们假设细胞试图避免拥挤的地区,并更喜欢远离承载能力的地方空间。在这里,我们的主要目标是证明具有连续概况的行进波的存在。本文补充了我们先前关于尖锐行进波的结果。我们以PDE问题的数值模拟结束了论文,说明了这一结果。

This work describes a hyperbolic model for cell-cell repulsion with population dynamics. We consider the pressure produced by a population of cells to describe their motion. We assume that cells try to avoid crowded areas and prefer locally empty spaces far away from the carrying capacity. Here, our main goal is to prove the existence of traveling waves with continuous profiles. This article complements our previous results about sharp traveling waves. We conclude the paper with numerical simulations of the PDE problem, illustrating such a result.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源