论文标题
涉及对称逆的单体和类别的花圈产品的演示文稿
Presentations for wreath products involving symmetric inverse monoids and categories
论文作者
论文摘要
在代数和科学的许多领域中出现了涉及对称逆的单体/半群/类别的花环产品,发电机和关系的演示是此类研究的关键工具。当前的论文为$ M \ wr \ Mathcal I_n $,$ M \ wr \ pereratatorName {sing}(\ Mathcal i_n)$和$ M \ m \ wr \ Mathcal i $找到了此类演示文稿。这里$ m $是一个任意的单体,$ \ MATHCAL I_N $是对称的近事件,$ \ operatatorName {sing}(\ Mathcal I_n)$其单数理想,而$ \ Mathcal i $是对称性逆类别。
Wreath products involving symmetric inverse monoids/semigroups/categories arise in many areas of algebra and science, and presentations by generators and relations are crucial tools in such studies. The current paper finds such presentations for $M\wr\mathcal I_n$, $M\wr\operatorname{Sing}(\mathcal I_n)$ and $M\wr\mathcal I$. Here $M$ is an arbitrary monoid, $\mathcal I_n$ is the symmetric inverse monoid, $\operatorname{Sing}(\mathcal I_n)$ its singular ideal, and $\mathcal I$ is the symmetric inverse category.