论文标题
麦克斯韦的方程式在均匀空间中用于可允许的电磁场
Maxwell's equations in homogeneous spaces for admissible electromagnetic fields
论文作者
论文摘要
麦克斯韦的真空方程是集成在均匀空间中可允许的电磁场的。可允许的电磁场是空间组生成对称算子代数(运动积分)的代数,该代数对组运算符的代数是同构的。与一组运动相关的两个帧用于获得麦克斯韦方程减少的普通微分方程系统。解决方案是在四元组中获得的。可允许的电磁场的电势和所获得的溶液中包含的空间的指标取决于六个任意时间函数,因此可以使用它们将其集成到重力理论中。
Maxwell's vacuum equations are integrated for admissible electromagnetic fields in homogeneous spaces. Admissible electromagnetic fields are those for which the space group generates an algebra of symmetry operators ( integrals of motion ) that is isomorphic to the algebra of group operators. Two frames associated with the group of motions are used to obtain systems of ordinary differential equations to which Maxwell's equations reduce. The solutions are obtained in quadratures. The potentials of the admissible electromagnetic fields and the metrics of the spaces contained in the obtained solutions depend on six arbitrary time functions, so it is possible to use them to integrate field equations in the theory of gravity.