论文标题

对话策略使用多维建模适应新操作集

Dialogue Strategy Adaptation to New Action Sets Using Multi-dimensional Modelling

论文作者

Keizer, Simon, Braunschweiler, Norbert, Stoyanchev, Svetlana, Doddipatla, Rama

论文摘要

建立针对新领域和应用的统计口语对话系统的主要瓶颈是需要大量培训数据。为了解决这个问题,我们采用多维方法来对话管理,并评估其转移学习的潜力。具体而言,我们利用预先训练的任务独立的策略来加快特定于任务的操作集的训练,其中要求插槽的单个摘要操作被多个特定于插槽的请求操作取代。使用基于议程的用户模拟器的策略优化和评估实验表明,使用培训数据有限,使用拟议的多维适应方法可以达到更好的性能水平。我们确认了对我们的口语对话系统的人类用户评估的这种改进,并比较了部分训练的政策。多维系统(在目标情况下对有限培训数据进行了适应)的表现使一维基线(无需适应相同数量的培训数据)的成功率高出7%。

A major bottleneck for building statistical spoken dialogue systems for new domains and applications is the need for large amounts of training data. To address this problem, we adopt the multi-dimensional approach to dialogue management and evaluate its potential for transfer learning. Specifically, we exploit pre-trained task-independent policies to speed up training for an extended task-specific action set, in which the single summary action for requesting a slot is replaced by multiple slot-specific request actions. Policy optimisation and evaluation experiments using an agenda-based user simulator show that with limited training data, much better performance levels can be achieved when using the proposed multi-dimensional adaptation method. We confirm this improvement in a crowd-sourced human user evaluation of our spoken dialogue system, comparing partially trained policies. The multi-dimensional system (with adaptation on limited training data in the target scenario) outperforms the one-dimensional baseline (without adaptation on the same amount of training data) by 7% perceived success rate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源