论文标题

稀疏代码对图像失真的敏感性

Sensitivity of sparse codes to image distortions

论文作者

Luther, Kyle, Seung, H. Sebastian

论文摘要

稀疏编码已被提议作为视觉皮层理论,也是一种无监督的学习表征算法。我们用MNIST数据集在经验上表明,稀疏代码可能对图像扭曲非常敏感,这种行为可能会阻碍不变的对象识别。局部线性分析表明,灵敏度是由于存在高取消的活动字典元件的线性组合所致。显示最近的邻居分类器在稀疏代码上的性能要比原始图像差。对于具有足够数量的标记示例的线性分类器,稀疏代码显示出比原始图像更高的精度,但不高于随机前馈净计算的表示。对失真的敏感性似乎是稀疏代码的基本属性,当将稀疏代码应用于不变对象识别时,应该意识到此属性。

Sparse coding has been proposed as a theory of visual cortex and as an unsupervised algorithm for learning representations. We show empirically with the MNIST dataset that sparse codes can be very sensitive to image distortions, a behavior that may hinder invariant object recognition. A locally linear analysis suggests that the sensitivity is due to the existence of linear combinations of active dictionary elements with high cancellation. A nearest neighbor classifier is shown to perform worse on sparse codes than original images. For a linear classifier with a sufficiently large number of labeled examples, sparse codes are shown to yield higher accuracy than original images, but no higher than a representation computed by a random feedforward net. Sensitivity to distortions seems to be a basic property of sparse codes, and one should be aware of this property when applying sparse codes to invariant object recognition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源