论文标题

部分可观测时空混沌系统的无模型预测

Stress-Testing Point Cloud Registration on Automotive LiDAR

论文作者

Drory, Amnon, Avidan, Shai, Giryes, Raja

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Rigid Point Cloud Registration (PCR) algorithms aim to estimate the 6-DOF relative motion between two point clouds, which is important in various fields, including autonomous driving. Recent years have seen a significant improvement in global PCR algorithms, i.e. algorithms that can handle a large relative motion. This has been demonstrated in various scenarios, including indoor scenes, but has only been minimally tested in the Automotive setting, where point clouds are produced by vehicle-mounted LiDAR sensors. In this work, we aim to answer questions that are important for automotive applications, including: which of the new algorithms is the most accurate, and which is fastest? How transferable are deep-learning approaches, e.g. what happens when you train a network with data from Boston, and run it in a vehicle in Singapore? How small can the overlap between point clouds be before the algorithms start to deteriorate? To what extent are the algorithms rotation invariant? Our results are at times surprising. When comparing robust parameter estimation methods for registration, we find that the fastest and most accurate is not one of the newest approaches. Instead, it is a modern variant of the well known RANSAC technique. We also suggest a new outlier filtering method, Grid-Prioritized Filtering (GPF), to further improve it. An additional contribution of this work is an algorithm for selecting challenging sets of frame-pairs from automotive LiDAR datasets. This enables meaningful benchmarking in the Automotive LiDAR setting, and can also improve training for learning algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源