论文标题
部分可观测时空混沌系统的无模型预测
Physically Interpretable Feature Learning and Inverse Design of Supercritical Airfoils
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Machine-learning models have demonstrated a great ability to learn complex patterns and make predictions. In high-dimensional nonlinear problems of fluid dynamics, data representation often greatly affects the performance and interpretability of machine learning algorithms. With the increasing application of machine learning in fluid dynamics studies, the need for physically explainable models continues to grow. This paper proposes a feature learning algorithm based on variational autoencoders, which is able to assign physical features to some latent variables of the variational autoencoder. In addition, it is theoretically proved that the remaining latent variables are independent of the physical features. The proposed algorithm is trained to include shock wave features in its latent variables for the reconstruction of supercritical pressure distributions. The reconstruction accuracy and physical interpretability are also compared with those of other variational autoencoders. Then, the proposed algorithm is used for the inverse design of supercritical airfoils, which enables the generation of airfoil geometries based on physical features rather than the complete pressure distributions. It also demonstrates the ability to manipulate certain pressure distribution features of the airfoil without changing the others.