论文标题

更少的是:学会完善对话历史的个性化对话世代

Less is More: Learning to Refine Dialogue History for Personalized Dialogue Generation

论文作者

Zhong, Hanxun, Dou, Zhicheng, Zhu, Yutao, Qian, Hongjin, Wen, Ji-Rong

论文摘要

个性化的对话系统探讨了产生与用户个性一致的响应的问题,该响应近年来引起了很多关注。现有的个性化对话系统试图从对话历史记录中提取用户资料,以指导个性化的响应生成。由于对话历史通常很长且嘈杂,因此大多数现有方法都会截断对话历史记录以建模用户的个性。这种方法可以产生一些个性化的响应,但是对话历史的很大一部分浪费了,导致个性化响应产生的次优性能。在这项工作中,我们建议在大规模上完善用户对话历史记录,根据我们可以处理更多的对话历史并获得更丰富,更准确的角色信息。具体而言,我们设计了一个MSP模型,该模型由三个个人信息炼油厂和个性化响应生成器组成。借助这些多层炼油厂,我们可以从对话历史记录中稀少地提取最有价值的信息(令牌),并利用其他类似用户的数据来增强个性化。两个现实世界数据集的实验结果证明了我们模型在产生更多信息和个性化响应方面的优势。

Personalized dialogue systems explore the problem of generating responses that are consistent with the user's personality, which has raised much attention in recent years. Existing personalized dialogue systems have tried to extract user profiles from dialogue history to guide personalized response generation. Since the dialogue history is usually long and noisy, most existing methods truncate the dialogue history to model the user's personality. Such methods can generate some personalized responses, but a large part of dialogue history is wasted, leading to sub-optimal performance of personalized response generation. In this work, we propose to refine the user dialogue history on a large scale, based on which we can handle more dialogue history and obtain more abundant and accurate persona information. Specifically, we design an MSP model which consists of three personal information refiners and a personalized response generator. With these multi-level refiners, we can sparsely extract the most valuable information (tokens) from the dialogue history and leverage other similar users' data to enhance personalization. Experimental results on two real-world datasets demonstrate the superiority of our model in generating more informative and personalized responses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源