论文标题

与功能限制的复合优化的随机亚级别

Stochastic subgradient for composite optimization with functional constraints

论文作者

Necoara, Ion, Singh, Nitesh Kumar

论文摘要

在本文中,我们考虑了凸优化问题,其随机复合物镜功能函数受约束的(可能)无限的交集。目标函数以期望运算符的方式表示,以满足随机有限梯度条件的两个术语,或具有强凸类属性。与经典方法相反,通常将约束表示为简单集的交点,在本文中,我们认为每个约束集都作为凸的级别集,但不一定是可区分的函数。基于我们的一般优化模型提供的灵活性,我们考虑了一种随机可行性更新的随机亚级别方法。在每次迭代中,我们的算法采用旨在最小化目标函数的随机近端(子)梯度步骤,然后将随后的亚级别步骤最小化,使违反观察到的随机约束的可行性最小化。我们分析了提出的算法的收敛行为,以减少步骤尺寸以及目标函数是凸或强烈凸的情况,从而统一了非平滑且平滑的情况。我们证明了这种随机亚级别算法的司额收敛速率,该算法对于此类问题的亚级别方法是最佳的。当目标函数具有线性最小二乘形式并且约束是多面体的,这表明该算法是线性收敛的。数值证据支持我们方法在实际问题中的有效性。

In this paper we consider convex optimization problems with stochastic composite objective function subject to (possibly) infinite intersection of constraints. The objective function is expressed in terms of expectation operator over a sum of two terms satisfying a stochastic bounded gradient condition, with or without strong convexity type properties. In contrast to the classical approach, where the constraints are usually represented as intersection of simple sets, in this paper we consider that each constraint set is given as the level set of a convex but not necessarily differentiable function. Based on the flexibility offered by our general optimization model we consider a stochastic subgradient method with random feasibility updates. At each iteration, our algorithm takes a stochastic proximal (sub)gradient step aimed at minimizing the objective function and then a subsequent subgradient step minimizing the feasibility violation of the observed random constraint. We analyze the convergence behavior of the proposed algorithm for diminishing stepsizes and for the case when the objective function is convex or strongly convex, unifying the nonsmooth and smooth cases. We prove sublinear convergence rates for this stochastic subgradient algorithm, which are known to be optimal for subgradient methods on this class of problems. When the objective function has a linear least-square form and the constraints are polyhedral, it is shown that the algorithm converges linearly. Numerical evidence supports the effectiveness of our method in real problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源