论文标题

转移学习和合奏学习在图像级分类中的乳房组织病理学

Application of Transfer Learning and Ensemble Learning in Image-level Classification for Breast Histopathology

论文作者

Zheng, Yuchao, Li, Chen, Zhou, Xiaomin, Chen, Haoyuan, Xu, Hao, Li, Yixin, Zhang, Haiqing, Li, Xiaoyan, Sun, Hongzan, Huang, Xinyu, Grzegorzek, Marcin

论文摘要

背景:乳腺癌在全球女性中的患病率最高。乳腺癌及其组织病理学图像的分类和诊断一直是临床关注的热点。在计算机辅助诊断(CAD)中,传统分类模型主要使用单个网络来提取特征,这有很大的限制。另一方面,许多网络在患者级数据集上进行了训练和优化,而忽略了低级数据标签的应用。 方法:本文提出了一个基于图像级标签的深层集合模型,用于乳腺组织病理学图像的良性和恶性病变的二元分类。首先,Breakhis数据集随机分为培训,验证和测试集。然后,使用数据增强技术来平衡良性和恶性样本的数量。第三,考虑到转移学习的性能以及每个网络之间的互补性,VGG16,Xception,resnet50,densenet201被选为基本分类器。 结果:以精确度为重量的集合网络模型,图像级二进制分类的准确性为$ 98.90 \%$。为了验证我们方法的功能,在同一数据集上比较了最新的变压器和多层感知(MLP)模型。我们的模型以$ 5 \%-20 \%$优势获胜,强调了合奏模型在分类任务中的深远意义。 结论:这项研究重点是通过集合算法改善模型的分类性能。转移学习在小型数据集中起着至关重要的作用,从而提高了训练速度和准确性。我们的模型在准确性方面的表现优于许多现有方法,为辅助医学诊断领域提供了一种方法。

Background: Breast cancer has the highest prevalence in women globally. The classification and diagnosis of breast cancer and its histopathological images have always been a hot spot of clinical concern. In Computer-Aided Diagnosis (CAD), traditional classification models mostly use a single network to extract features, which has significant limitations. On the other hand, many networks are trained and optimized on patient-level datasets, ignoring the application of lower-level data labels. Method: This paper proposes a deep ensemble model based on image-level labels for the binary classification of benign and malignant lesions of breast histopathological images. First, the BreaKHis dataset is randomly divided into a training, validation and test set. Then, data augmentation techniques are used to balance the number of benign and malignant samples. Thirdly, considering the performance of transfer learning and the complementarity between each network, VGG16, Xception, ResNet50, DenseNet201 are selected as the base classifiers. Result: In the ensemble network model with accuracy as the weight, the image-level binary classification achieves an accuracy of $98.90\%$. In order to verify the capabilities of our method, the latest Transformer and Multilayer Perception (MLP) models have been experimentally compared on the same dataset. Our model wins with a $5\%-20\%$ advantage, emphasizing the ensemble model's far-reaching significance in classification tasks. Conclusion: This research focuses on improving the model's classification performance with an ensemble algorithm. Transfer learning plays an essential role in small datasets, improving training speed and accuracy. Our model has outperformed many existing approaches in accuracy, providing a method for the field of auxiliary medical diagnosis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源