论文标题

部分可观测时空混沌系统的无模型预测

Quantum computing hardware for HEP algorithms and sensing

论文作者

Alam, M. Sohaib, Belomestnykh, Sergey, Bornman, Nicholas, Cancelo, Gustavo, Chao, Yu-Chiu, Checchin, Mattia, Dinh, Vinh San, Grassellino, Anna, Gustafson, Erik J., Harnik, Roni, McRae, Corey Rae Harrington, Huang, Ziwen, Kapoor, Keshav, Kim, Taeyoon, Kowalkowski, James B., Kramer, Matthew J., Krasnikova, Yulia, Kumar, Prem, Kurkcuoglu, Doga Murat, Lamm, Henry, Lyon, Adam L., Milathianaki, Despina, Murthy, Akshay, Mutus, Josh, Nekrashevich, Ivan, Oh, JinSu, Özgüler, A. Barış, Perdue, Gabriel Nathan, Reagor, Matthew, Romanenko, Alexander, Sauls, James A., Stefanazzi, Leandro, Tubman, Norm M., Venturelli, Davide, Wang, Changqing, You, Xinyuan, van Zanten, David M. T., Zhou, Lin, Zhu, Shaojiang, Zorzetti, Silvia

论文摘要

量子信息科学利用量子力学的原理来实现当前计算机平台极其棘手的复杂性的计算算法。典型的应用范围从量子化学到优化问题,还包括用于高能量物理的模拟。量子硬件的最新成熟触发了量子硬件的几个机构(包括Fermilab)的初步探索,这些量子硬件能够在多个域中展示量子优势,从量子计算到通信,再到传感。由费米拉布(Fermilab)领导的超导量子材料和系统(SQM)中心致力于在量子计算和传感中提供突破性,介导量子工程和基于HEP的材料科学。该中心的主要目标是部署具有针对高能物理算法量身定制的出色性能的量子系统。在这篇雪人论文中,我们讨论了针对HEP算法的两个最有希望的超导量子体系结构,即由Transmon Descepes支持的三级系统(Qutrits),由Transmon Descepes耦合到平面设备和多层设备和多层系统(具有任意N能级的QUDITS),该系统由超过3D 3D载体支撑的超过3D载体。对于每个架构,我们都会展示示例性的HEP算法,并确定当前的挑战,正在进行的工作和未来的机会。此外,我们讨论了互连不同体系结构和单个计算节点的前景和复杂性。最后,我们回顾了多种不同的错误保护和纠正策略,并讨论了它们提高两个架构性能的潜力。该白皮书旨在与HEP社区接触并推动HEP研究和QIS硬件的进步。

Quantum information science harnesses the principles of quantum mechanics to realize computational algorithms with complexities vastly intractable by current computer platforms. Typical applications range from quantum chemistry to optimization problems and also include simulations for high energy physics. The recent maturing of quantum hardware has triggered preliminary explorations by several institutions (including Fermilab) of quantum hardware capable of demonstrating quantum advantage in multiple domains, from quantum computing to communications, to sensing. The Superconducting Quantum Materials and Systems (SQMS) Center, led by Fermilab, is dedicated to providing breakthroughs in quantum computing and sensing, mediating quantum engineering and HEP based material science. The main goal of the Center is to deploy quantum systems with superior performance tailored to the algorithms used in high energy physics. In this Snowmass paper, we discuss the two most promising superconducting quantum architectures for HEP algorithms, i.e. three-level systems (qutrits) supported by transmon devices coupled to planar devices and multi-level systems (qudits with arbitrary N energy levels) supported by superconducting 3D cavities. For each architecture, we demonstrate exemplary HEP algorithms and identify the current challenges, ongoing work and future opportunities. Furthermore, we discuss the prospects and complexities of interconnecting the different architectures and individual computational nodes. Finally, we review several different strategies of error protection and correction and discuss their potential to improve the performance of the two architectures. This whitepaper seeks to reach out to the HEP community and drive progress in both HEP research and QIS hardware.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源