论文标题
部分可观测时空混沌系统的无模型预测
Multilingual Syntax-aware Language Modeling through Dependency Tree Conversion
论文作者
论文摘要
将更强的句法偏见纳入神经语言模型(LMS)是一个长期的目标,但是在该领域的研究通常着重于对英语文本进行建模,而该文本很容易获得。将基于成分的树的LMS扩展到多语言设置,而依赖性树库更常见,可以通过依赖性到固定率转换方法。但是,这提出了一个问题,即哪种树格式最适合学习模型以及哪种语言。我们通过使用各种转换方法培训复发性神经网络语法(RNNG)来调查这个问题,并在多语言环境中对它们进行经验评估。我们通过七种类型的句法测试检查了九种转换方法和五种语言中LM性能的影响。平均而言,我们最佳模型的性能代表了所有语言中最糟糕的选择的准确性增长19%。我们的最佳模型显示了比顺序/过度参数化的LM的优势,这表明语法注射在多语种环境中的积极作用。我们的实验强调了选择正确的树形式主义的重要性,并提供了做出明智决定的见解。
Incorporating stronger syntactic biases into neural language models (LMs) is a long-standing goal, but research in this area often focuses on modeling English text, where constituent treebanks are readily available. Extending constituent tree-based LMs to the multilingual setting, where dependency treebanks are more common, is possible via dependency-to-constituency conversion methods. However, this raises the question of which tree formats are best for learning the model, and for which languages. We investigate this question by training recurrent neural network grammars (RNNGs) using various conversion methods, and evaluating them empirically in a multilingual setting. We examine the effect on LM performance across nine conversion methods and five languages through seven types of syntactic tests. On average, the performance of our best model represents a 19 \% increase in accuracy over the worst choice across all languages. Our best model shows the advantage over sequential/overparameterized LMs, suggesting the positive effect of syntax injection in a multilingual setting. Our experiments highlight the importance of choosing the right tree formalism, and provide insights into making an informed decision.