论文标题

通过上下文感知功能表示学习来增强CTR预测

Enhancing CTR Prediction with Context-Aware Feature Representation Learning

论文作者

Wang, Fangye, Wang, Yingxu, Li, Dongsheng, Gu, Hansu, Lu, Tun, Zhang, Peng, Gu, Ning

论文摘要

CTR预测已在现实世界中广泛使用。许多方法模型互动以提高其性能。但是,大多数方法仅学习每个功能的固定表示形式,而无需考虑在不同上下文下每个功能的重要性,从而导致性能较低。最近,几种方法试图学习特征表示矢量级别的权重,以解决固定表示问题。但是,它们仅产生线性转换以完善固定特征表示,这些特征表示仍不足以捕获不同上下文下每个功能的不同重要性。在本文中,我们提出了一个名为“特征改进网络”(FRNET)的新型模块,该模块在不同上下文中的每个功能中学习上下文感知的特征表示。 FRNET由两个关键组成部分组成:1)信息提取单元(IEU),该单元(IEU)捕获上下文信息和交叉功能关系,以指导上下文感知功能的细化; 2)补充选择门(CSGATE),该门可以自适应地整合具有比特权重的IEU中学到的原始和互补特征表示。值得注意的是,FRNET与现有的CTR方法正交,因此可以在许多现有方法中应用以提高其性能。进行全面的实验以验证FRNET的有效性,效率和兼容性。

CTR prediction has been widely used in the real world. Many methods model feature interaction to improve their performance. However, most methods only learn a fixed representation for each feature without considering the varying importance of each feature under different contexts, resulting in inferior performance. Recently, several methods tried to learn vector-level weights for feature representations to address the fixed representation issue. However, they only produce linear transformations to refine the fixed feature representations, which are still not flexible enough to capture the varying importance of each feature under different contexts. In this paper, we propose a novel module named Feature Refinement Network (FRNet), which learns context-aware feature representations at bit-level for each feature in different contexts. FRNet consists of two key components: 1) Information Extraction Unit (IEU), which captures contextual information and cross-feature relationships to guide context-aware feature refinement; and 2) Complementary Selection Gate (CSGate), which adaptively integrates the original and complementary feature representations learned in IEU with bit-level weights. Notably, FRNet is orthogonal to existing CTR methods and thus can be applied in many existing methods to boost their performance. Comprehensive experiments are conducted to verify the effectiveness, efficiency, and compatibility of FRNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源