论文标题

线性Sobolev传输中极端的时间间歇性:几乎光滑的非独特解决方案

Extreme temporal intermittency in the linear Sobolev transport: almost smooth nonunique solutions

论文作者

Cheskidov, Alexey, Luo, Xiaoyutao

论文摘要

在本文中,我们重新审视了时间间歇性的概念,以获得线性传输方程的尖锐非唯一性结果。我们构建具有尖锐sobolev规则性$ l^1_t w^{1,p} $的无差异矢量字段,用于所有$ p <\ infty $在空间尺寸中的$ d \ geq 2 $,其传输方程允许nonunique nonunique弱解决方案属于所有$ l^p_tc^k $ for of $ l^p_tc^k $ for $ p <\ k k k \ k \ b \ b \ b \ b \ b \ b \ in c \ in。特别是,我们的结果表明,在二翼狮子理论的唯一性中的时间整合性假设很敏锐。对于具有任意大订单的扩散操作员在任何维度上,$ d \ geq 2 $的传输扩散操作员也适用于运输扩散方程。

In this paper, we revisit the notion of temporal intermittency to obtain sharp nonuniqueness results for linear transport equations. We construct divergence-free vector fields with sharp Sobolev regularity $L^1_t W^{1,p}$ for all $p<\infty$ in space dimensions $d\geq 2$ whose transport equations admit nonunique weak solutions belonging to $L^p_tC^k$ for all $p<\infty$ and $k\in \mathbb{N}$. In particular, our result shows that the time-integrability assumption in the uniqueness of the DiPerna-Lions theory is sharp. The same result also holds for transport-diffusion equations with diffusion operators of arbitrarily large order in any dimensions $d \geq 2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源