论文标题

图像修复的不同大气湍流模拟方法的比较

A comparison of different atmospheric turbulence simulation methods for image restoration

论文作者

Nair, Nithin Gopalakrishnan, Mei, Kangfu, Patel, Vishal M.

论文摘要

大气湍流通过将模糊和几何畸变引入捕获的场景引入模糊和几何变形,从而恶化了远程成像系统捕获的图像质量。当这些图像上执行对象/面部识别和检测等计算机视觉算法时,这会导致性能下降。近年来,文献中提出了各种基于深度学习的大气湍流缓解方法。这些方法通常是使用合成生成的图像训练的,并在实际图像上进行了测试。因此,这些恢复方法的性能取决于用于训练网络的模拟类型。在本文中,我们系统地评估了各种湍流模拟方法对图像恢复的有效性。特别是,我们使用六个模拟方法在现实世界中的LRFID数据集上评估了两个状态或艺术修复网络的性能,该数据集由湍流降解的面部图像组成。本文将为在该领域工作的研究人员和从业人员提供指导,以选择适当的数据生成模型,以培训湍流缓解的深层模型。仿真方法的实现代码,网络的源代码以及预培训的模型将公开提供。

Atmospheric turbulence deteriorates the quality of images captured by long-range imaging systems by introducing blur and geometric distortions to the captured scene. This leads to a drastic drop in performance when computer vision algorithms like object/face recognition and detection are performed on these images. In recent years, various deep learning-based atmospheric turbulence mitigation methods have been proposed in the literature. These methods are often trained using synthetically generated images and tested on real-world images. Hence, the performance of these restoration methods depends on the type of simulation used for training the network. In this paper, we systematically evaluate the effectiveness of various turbulence simulation methods on image restoration. In particular, we evaluate the performance of two state-or-the-art restoration networks using six simulations method on a real-world LRFID dataset consisting of face images degraded by turbulence. This paper will provide guidance to the researchers and practitioners working in this field to choose the suitable data generation models for training deep models for turbulence mitigation. The implementation codes for the simulation methods, source codes for the networks, and the pre-trained models will be publicly made available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源