论文标题

基于树的自适应网格改进代码闪光的求解器-III:尘埃和气体辐射压力的新方案以及从弥漫源转移的辐射转移

Tree-based solvers for adaptive mesh refinement code FLASH -- III: a novel scheme for radiation pressure on dust and gas and radiative transfer from diffuse sources

论文作者

Klepitko, A., Walch, S., Wünsch, R., Seifried, D., Dinnbier, F., Haid, S.

论文摘要

辐射是星际介质能量学的重要贡献,但其运输很难在数值上解决。我们提出了一种新的方法,可以通过向后射线追踪来求解扩散源的辐射传递。在这里,我们关注红外辐射的辐射转移和尘埃的辐射压力。新的模块,\ textsc {treeray/radpressure},是在基于网格的MHD代码{\ sc flash}中实现的新颖辐射传输方法\ textsc {treeray}的扩展。在\ textsc {treeray/radpressure}中,每个单元格和每个恒星粒子都是红外辐射的来源。我们还描述了如何通过化学网络耦合气体,灰尘和辐射。这使我们能够计算热平衡中的局部灰尘温度,从而使经典的灰色近似显着改善。在几项测试中,我们证明该方案会产生正确的辐射强度以及辐射压力的正确动量输入。随后,我们将新方案应用于从150 $ {\ rm m} _ \ odot $的倒塌的湍流核心中建模大型星形形成。我们包括两个,电离和红外辐射对核心动力学的影响。我们发现,新生儿大型恒星由于辐射加热而阻止其接近碎裂性。随着时间的流逝,灰尘和辐射温度均衡,而由于冲击加热,气温可能会变得更高,或者由于尘埃气耦合不足而导致的冷温。与重力相比,在这项工作中,恒星质量对恒星质量的影响无关紧要。

Radiation is an important contributor to the energetics of the interstellar medium, yet its transport is difficult to solve numerically. We present a novel approach towards solving radiative transfer of diffuse sources via backwards ray tracing. Here we focus on the radiative transfer of infrared radiation and the radiation pressure on dust. The new module, \textsc{TreeRay/RadPressure}, is an extension to the novel radiative transfer method \textsc{TreeRay} implemented in the grid-based MHD code {\sc Flash}. In \textsc{TreeRay/RadPressure}, every cell and every star particle is a source of infrared radiation. We also describe how gas, dust and radiation are coupled via a chemical network. This allows us to compute the local dust temperature in thermal equilibrium, leading to a significantly improvement over the classical grey approximation. In several tests, we demonstrate that the scheme produces the correct radiative intensities as well as the correct momentum input by radiation pressure. Subsequently, we apply our new scheme to model massive star formation from a collapsing, turbulent core of 150 ${\rm M}_\odot$. We include the effects of both, ionizing and infrared radiation on the dynamics of the core. We find that the newborn massive star prevents fragmentation in its proximity due to radiative heating. Over time, dust and radiation temperature equalize, while the gas temperature can be either warmer due to shock heating or colder due to insufficient dust-gas coupling. Compared to gravity, the effects of radiation pressure are insignificant for the stellar mass on the simulated time scale in this work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源