论文标题

光学连贯性的新方面及其量子技术的潜力

New Aspects of Optical Coherence and their Potential for Quantum Technologies

论文作者

Miller, Nathaniel Robert

论文摘要

当前,光学技术会影响我们的大部分生活,从用于科学测量的光到构成互联网骨干的光纤电缆。但是,随着目前的光学基础设施的增长,我们发现这些技术并非无限。但是,我们当前的光学技术在经典原理上发挥作用,并且可以通过纳入我们对量子光学的知识来轻松改善。为了实施量子技术,我们对量子相干性的理解必须提高。通过这些知识,我们可以维持量子状态,从而更长的时间。在本文中,我将证明,有了足够的相干属性知识,可以得出一个简单的代数,该代数可以为量子网络图上的图形减少提供规则。然后,我提供了一种基本算法,该算法可以在量子网络上找到用于通信的最佳子图。接下来,我证明,通过测量磁场的光子统计数据和二阶量子相干性,可以创建能够区分像素上光源的神经网络。然后将其用于开发能够超过Abbe-Rayleigh标准的成像方案。最后,我介绍了van cittert-zernike定理的多光子量子版本。这提供了能够确定整个系统中量子相干性传播的形式主义。然后,我通过证明由带有入射热束的线性系统创建的亚硫磺尼亚统计数据来证明定理的有用性,只能通过选择后才能获得。总的来说,这为量子技术的连贯性和形式主义的新应用提供了促进,以进一步扩展我们的知识。

Currently, optical technology impacts most of our lives, from light used in scientific measurement to the fiber optic cables that makeup the backbone of the internet. However, as our current optical infrastructure grows, we discover that these technologies are not limitless. However, our current optical technology functions on classical principles, and can be easily improved by incorporating our knowledge of quantum optics. In order to implement quantum technologies, our understanding of quantum coherence must improve. Through this knowledge we can maintain quantum states, and therefore their information, longer. In this dissertation, I will demonstrate that with sufficient knowledge of coherent properties, a simple algebra can be derived which can provide rules for graph reductions on a quantum network graph. Using this knowledge, I then provide a rudimentary algorithm which can find the optimal subgraph for communication on a quantum network. Next, I demonstrate that by measuring the photon statistics and second-order quantum coherence of a field, one can create a neural network capable of distinguishing the light sources on a pixel. Which is then applied to develop an imaging scheme capable of surpassing the Abbe-Rayleigh Criterion. Lastly, I present a multiphoton quantum version of the van Cittert-Zernike theorem. This provides formalism capable of determining the propagation of quantum coherence throughout a system. I then demonstrate the usefulness of the theorem by demonstrating sub-Poissonian statistics created by a linear system with an incident thermal beam, obtainable only by post-selection. Altogether, this provides incite into new applications of coherence to quantum technologies and the formalism to extending our knowledge even further.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源