论文标题
Oldinal-Reslogit:可解释的深层残留神经网络,用于有序选择
Ordinal-ResLogit: Interpretable Deep Residual Neural Networks for Ordered Choices
论文作者
论文摘要
这项研究提出了残留logit(Oldinal-Reslogit)模型的序数版本,以研究序响应。我们将标准的重新延展模型集成到一致的等级逻辑(珊瑚)框架(分类为二进制分类算法)中,以开发一个完全可解释的基于深度学习的序数回归模型。随着Oldinal-Reslogit模型的配方符合残留的神经网络概念,我们提出的模型解决了机器学习算法的主要约束,称为Black-Box。此外,作为序数数据的二进制分类框架,序数逆流模型保证了二进制分类器之间的一致性。我们表明,由此产生的公式能够从数据中捕获潜在的未观察到的异质性,并且是一种可解释的基于深度学习的模型。市场份额,替代模式和弹性的配方被得出。我们使用行人等待时间和旅行距离上的“偏好”(SP)数据集的序列logit模型(SP)数据集比较了Oldinal-Reslogit模型的性能和有序的logit模型。我们的结果表明,Oldinal-Reslogit优于两个数据集的传统序数回归模型。此外,从序数逆转录RP模型中获得的结果表明,诸如驾驶和运输成本之类的旅行属性对选择非大型旅行的位置具有重大影响。就序数敏捷SP模型而言,我们的结果强调,与道路相关的变量和交通状况是预测行人等待时间的因素,因此混合的交通状况大大增加了选择更长的等待时间的可能性。
This study presents an Ordinal version of Residual Logit (Ordinal-ResLogit) model to investigate the ordinal responses. We integrate the standard ResLogit model into COnsistent RAnk Logits (CORAL) framework, classified as a binary classification algorithm, to develop a fully interpretable deep learning-based ordinal regression model. As the formulation of the Ordinal-ResLogit model enjoys the Residual Neural Networks concept, our proposed model addresses the main constraint of machine learning algorithms, known as black-box. Moreover, the Ordinal-ResLogit model, as a binary classification framework for ordinal data, guarantees consistency among binary classifiers. We showed that the resulting formulation is able to capture underlying unobserved heterogeneity from the data as well as being an interpretable deep learning-based model. Formulations for market share, substitution patterns, and elasticities are derived. We compare the performance of the Ordinal-ResLogit model with an Ordered Logit Model using a stated preference (SP) dataset on pedestrian wait time and a revealed preference (RP) dataset on travel distance. Our results show that Ordinal-ResLogit outperforms the traditional ordinal regression model for both datasets. Furthermore, the results obtained from the Ordinal-ResLogit RP model show that travel attributes such as driving and transit cost have significant effects on choosing the location of non-mandatory trips. In terms of the Ordinal-ResLogit SP model, our results highlight that the road-related variables and traffic condition are contributing factors in the prediction of pedestrian waiting time such that the mixed traffic condition significantly increases the probability of choosing longer waiting times.