论文标题
相位检索的全球几何景观的几乎最佳界限
Nearly optimal bounds for the global geometric landscape of phase retrieval
论文作者
论文摘要
相位检索问题与恢复未知信号$ \ bf {x} \ in \ Mathbb {r}^n $从一组仅大小的测量$ y_j = | \ langle \ langle \ bf {a} _j, j = 1,\ ldots,m $。即使在随机初始化的情况下,自然最小二乘公式也可以用来有效地解决此问题,尽管其损失函数的不符号性。解释这种令人惊讶的现象的一种方法是良性的几何形状景观:(1)所有局部最小化者都是全球的; (2)目标函数在每个马鞍点和局部最大化器周围具有负曲率。在本文中,我们表明$ m = o(n \ log n)$高斯随机测量足以保证常用估计量的损失函数具有高概率的良性几何景观。这是回答Sun-qu-Wright给出的开放问题的一步,其中作者建议$ O(n \ log n)$甚至$ o(n)$足以保证有利的几何属性。
The phase retrieval problem is concerned with recovering an unknown signal $\bf{x} \in \mathbb{R}^n$ from a set of magnitude-only measurements $y_j=|\langle \bf{a}_j,\bf{x} \rangle|, \; j=1,\ldots,m$. A natural least squares formulation can be used to solve this problem efficiently even with random initialization, despite its non-convexity of the loss function. One way to explain this surprising phenomenon is the benign geometric landscape: (1) all local minimizers are global; and (2) the objective function has a negative curvature around each saddle point and local maximizer. In this paper, we show that $m=O(n \log n)$ Gaussian random measurements are sufficient to guarantee the loss function of a commonly used estimator has such benign geometric landscape with high probability. This is a step toward answering the open problem given by Sun-Qu-Wright, in which the authors suggest that $O(n \log n)$ or even $O(n)$ is enough to guarantee the favorable geometric property.