论文标题
平面粘性冲击波的非线性稳定性与三维可压缩Navier-Stokes方程
Nonlinear stability of planar viscous shock wave to three-dimensional compressible Navier-Stokes equations
论文作者
论文摘要
我们证明了平面粘性震动的非线性稳定性,直到对三维(3D)可压缩的Navier-Stokes方程在通用扰动下,特别是没有零质量条件的时间。此外,时间依赖性的偏移函数会在时间上保持冲击曲线形状。我们的稳定性结果是无条件的,对于弱平面Navier-Stokes Shock。我们的证明是由$ - 收集方法(一种加权$ l^2 $偏爱的熵方法),并在[10,11,13]中引入了时间依赖的偏移,以在一维(1D)案例中稳定粘性冲击。代替经典的抗衍生技术,我们对原始$ h^2 $ ert扰动框架进行了平面navier-stokes冲击的稳定性分析,因此不一定需要零质量条件,这反过来又带来了由于粘性冲击的压缩性而带来的本质困难。此外,与1D情况相比,沿多维横向方向的波传播及其与粘性冲击的相互作用还有其他困难。为了克服这些困难,多维版本的尖锐加权Poincar $ {\ rm \ Acute {e}} $不平等(请参阅Lemma 3.1),$ A $ A $ contraction Techniques具有时间依赖时间的转移,以及多维Navier-Stokes系统的某些基本物理结构。
We prove the nonlinear stability of the planar viscous shock up to a time-dependent shift for the three-dimensional (3D) compressible Navier-Stokes equations under the generic perturbations, in particular, without zero mass conditions. Moreover, the time-dependent shift function keeps the shock profile shape time-asymptotically. Our stability result is unconditional for the weak planar Navier-Stokes shock. Our proof is motivated by the $a$-contraction method (a kind of weighted $L^2$-relative entropy method) with time-dependent shift introduced in [10,11,13] for the stability of viscous shock in one-dimensional (1D) case. Instead of the classical anti-derivative techniques, we perform the stability analysis of planar Navier-Stokes shock in original $H^2$-perturbation framework and therefore zero mass conditions are not necessarily needed, which, in turn, brings out the essential difficulties due to the compressibility of viscous shock. Furthermore, compared with 1D case, there are additional difficulties coming from the wave propagation along the multi-dimensional transverse directions and their interactions with the viscous shock. To overcome these difficulties, a multi-dimensional version sharp weighted Poincar${\rm \acute{e}}$ inequality (see Lemma 3.1), $a$-contraction techniques with time-dependent shift, and some essential physical structures of the multi-dimensional Navier-Stokes system are fully used.