论文标题
扭曲的双层u(1)狄拉克旋转液体
Twisted bilayer U(1) Dirac spin liquids
论文作者
论文摘要
当两层二维材料与相对扭曲组装时,莫伊尔的模式会产生,从而引起了巨大的外来现象。在这项工作中,我们考虑扭曲两个托有狄拉克量子自旋液体的三角形晶格。单个解耦层通过紧凑型量子电动力学在2+1个维度(QED $ _3 $)中描述,并具有紧急的$ \ mathrm {u}(1)$ gauge场,假定该字段被假定流到IR中与保险对称性的IR中的固定点。我们使用最新的结果来对单极运算符的量子数,这些量子数量为$2π$ tunnel the Compact仪表场的通量。发现在双层系统中,层间单极隧道是一种对称性允许的相关扰动,可诱导(有序)不稳定性。我们使用扰动理论表明,在扭转两层时,系统在层间相互作用下仍然不稳定,但是与未扭转的情况相比,任何有限的扭曲角度都会使这种不稳定变化。为了分析(扭曲的)层间隧道引起的结果阶段,我们使用“共形平均磁场理论”,该理论将相互作用的双层系统降低到两个QED $ _3 $耦合到背景字段的两个副本,这些副本将自愿确定。在弱耦合方案中,与Moiré晶格常数设定的能量量表相比,层间耦合弱,我们在扰动上求解了自矛盾方程。在强耦合层的极限中,使用了局部缩放近似,我们发现磁有序状态表现出磁性涡流的晶格,并且晶格常数可通过扭曲角度调节。
When two layers of two-dimensional materials are assembled with a relative twist, moiré patterns arise, inducing a tremendous wealth of exotic phenomena. In this work, we consider twisting two triangular lattices hosting Dirac quantum spin liquids. A single decoupled layer is described by compact quantum electrodynamics in 2+1 dimensions (QED$_3$) with an emergent $\mathrm{U}(1)$ gauge field, which is assumed to flow to a strongly interacting fixed point in the IR with conformal symmetry. We use recent results for the quantum numbers of monopole operators, which tunnel $2 π$ fluxes of the compact gauge field. It is found that, in the bilayer system, interlayer monopole tunneling is a symmetry-allowed relevant perturbation which induces an (ordering) instability. We show using perturbation theory that upon twisting the two layers the system remains unstable under the interlayer interaction, but any finite twist angle softens this instability compared to the untwisted case. To analyse the resulting phase induced by the (twisted) interlayer tunneling, we use "conformal mean field theory", which reduces the interacting bilayer system to two copies of QED$_3$ coupled to background fields which are to be determined self-consistently. In the weak-coupling regime, where the interlayer coupling is weak compared to the energy scale set by the moiré lattice constant, we solve the self-consistency equations perturbatively. In the limit of strongly coupled layers, a local scaling approximation is used, and we find that the magnetically ordered state exhibits a lattice of magnetic vortices, with the lattice constant tunable through the twisting angle.