论文标题

通过反向kullback-leibler差异的稳健阶段检索

Robust Phase Retrieval via Reverse Kullback-Leibler Divergence

论文作者

Choudhury, Nazia Afroz, Yonel, Bariscan, Yazici, Birsen

论文摘要

噪声和异常值的鲁棒性是许多在成像和信号处理中应用的相位检索算法中的理想性状。在本文中,我们基于在Wirtinger Flow(WF)框架中最小化反向Kullback-Leibler Divergence(RKLD)的最小化,开发了新颖的鲁棒相检索算法。我们以两种不同的方式使用RKLD对仅强度的测量进行测量:i)基于光谱估计的最小失真设计设计新颖的初始估计,而ii)作为基于WF的迭代精炼的损失函数。基于RKLD的损耗功能通过以对数尺度处理数据来提供隐式正规化,并提供以下好处:抑制异常值的影响并促进噪声子空间正交的预测。我们进行定量分析,证明了与$ \ ell_2 $和基于泊松损失的最小化相比,基于RKLD的最小化的鲁棒性。我们基于RKLD最小化提出了三种算法,其中包括两种具有截短方案的算法,以增强对严重污染的鲁棒性。我们的数值研究使用基于合成编码衍射模式和实际光学成像数据生成的数据。结果证明了我们算法在样本效率,收敛速度和鲁棒性方面的优势,相对于最先进的技术而言。

Robustness to noise and outliers is a desirable trait in phase retrieval algorithms for many applications in imaging and signal processing. In this paper, we develop novel robust phase retrieval algorithms based on the minimization of reverse Kullback-Leibler divergence (RKLD) within the Wirtinger Flow (WF) framework. We use RKLD over intensity-only measurements in two distinct ways: i) to design a novel initial estimate based on minimum distortion design of spectral estimates, and ii) as a loss function for iterative refinement based on WF. The RKLD-based loss function offers implicit regularization by processing data at the logarithmic scale and provides the following benefits: suppressing the influence of outliers and promoting projections orthogonal to noise subspace. We perform a quantitative analysis demonstrating the robustness of RKLD-based minimization as compared to that of the $\ell_2$ and Poisson loss-based minimization. We present three algorithms based on RKLD minimization, including two with truncation schemes to enhance the robustness to significant contamination. Our numerical study uses data generated based on synthetic coded diffraction patterns and real optical imaging data. The results demonstrate the advantages of our algorithms in terms of sample efficiency, convergence speed, and robustness with respect to outliers over the state-of-the-art techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源