论文标题

一个基于注意力的模型,用于预测上下文信息性和课程学习应用

An Attention-Based Model for Predicting Contextual Informativeness and Curriculum Learning Applications

论文作者

Nam, Sungjin, Jurgens, David, Frishkoff, Gwen, Collins-Thompson, Kevyn

论文摘要

人类和机器都通过句子中的上下文信息来学习未知词的含义,但并非所有上下文都对学习同样有用。我们介绍了一种有效的方法来捕获有关给定目标词的上下文信息水平。我们的研究做出了三个主要贡献。首先,我们开发了估计上下文信息性的模型,重点关注句子的教学方面。我们使用预训练嵌入的基于注意力的方法显示了我们的单语言数据集和现有多句子上下文数据集中的最新性能。其次,我们展示了我们的模型如何识别句子中的关键上下文元素,这些句子可能对读者对目标词的理解有最大的作用。第三,我们研究了我们最初为学生词汇学习应用程序开发的上下文信息性模型如何用于开发更好的培训课程,以在批处理学习和少量机器学习设置中为单词嵌入模型开发。我们认为,我们的结果为支持人类和机器学习者的语言学习的应用开放了新的可能性。

Both humans and machines learn the meaning of unknown words through contextual information in a sentence, but not all contexts are equally helpful for learning. We introduce an effective method for capturing the level of contextual informativeness with respect to a given target word. Our study makes three main contributions. First, we develop models for estimating contextual informativeness, focusing on the instructional aspect of sentences. Our attention-based approach using pre-trained embeddings demonstrates state-of-the-art performance on our single-context dataset and an existing multi-sentence context dataset. Second, we show how our model identifies key contextual elements in a sentence that are likely to contribute most to a reader's understanding of the target word. Third, we examine how our contextual informativeness model, originally developed for vocabulary learning applications for students, can be used for developing better training curricula for word embedding models in batch learning and few-shot machine learning settings. We believe our results open new possibilities for applications that support language learning for both human and machine learners.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源