论文标题

两个涉及修改的贝塞尔函数和一类算术功能的一般系列身份

Two General Series Identities Involving Modified Bessel Functions and a Class of Arithmetical Functions

论文作者

Berndt, Bruce C., Dixit, Atul, Gupta, Rajat, Zaharescu, Alexandru

论文摘要

我们考虑两个序列$ a(n)$和$ b(n)$,$ 1 \ leq n <\ infty $,由dirichlet系列生成 $$ \ sum_ {n = 1}^{\ infty} \ frac {a(n)} {λ_n^{s}} \ qquad \ text {and} \ qquad \ sum_ {n = 1}^{\ infty} \ frac {b(n)} {μ_n^{s}},$$ 满足涉及伽马函数$γ(S)$的熟悉功能方程。建立了两个一般身份。第一个涉及修改的贝塞尔函数$k_μ(z)$,可以将其视为“模块化”或“ theta”关系,其中显示了修改的贝塞尔函数而不是指数函数。出现在第二个身份中的是$k_μ(z)$,虚构参数的bessel函数$i_μ(z)$和普通的超几何函数$ {_ 2f_1}(a,b; c; c; z)$。尽管文献中出现了某些特殊案例,但一般身份是新的。身份中出现的算术函数包括Ramanujan的算术函数$τ(n)$; $ n $的表示形式为$ k $ squares $ r_k(n)$的总和;和原始的dirichlet字符$χ(n)$。

We consider two sequences $a(n)$ and $b(n)$, $1\leq n<\infty$, generated by Dirichlet series $$\sum_{n=1}^{\infty}\frac{a(n)}{λ_n^{s}}\qquad\text{and}\qquad \sum_{n=1}^{\infty}\frac{b(n)}{μ_n^{s}},$$ satisfying a familiar functional equation involving the gamma function $Γ(s)$. Two general identities are established. The first involves the modified Bessel function $K_μ(z)$, and can be thought of as a 'modular' or 'theta' relation wherein modified Bessel functions, instead of exponential functions, appear. Appearing in the second identity are $K_μ(z)$, the Bessel functions of imaginary argument $I_μ(z)$, and ordinary hypergeometric functions ${_2F_1}(a,b;c;z)$. Although certain special cases appear in the literature, the general identities are new. The arithmetical functions appearing in the identities include Ramanujan's arithmetical function $τ(n)$; the number of representations of $n$ as a sum of $k$ squares $r_k(n)$; and primitive Dirichlet characters $χ(n)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源