论文标题

诱导高斯流程网络

Inducing Gaussian Process Networks

论文作者

Tibo, Alessandro, Nielsen, Thomas Dyhre

论文摘要

高斯流程(GPS)具有功能强大但计算昂贵的机器学习模型,需要对每个预测进行内核协方差矩阵估算。在大型且复杂的域(例如图形,集合或图像)中,合适的内核的选择也可能是不平凡的,可以确定学习任务的额外障碍。在过去的十年中,这些挑战在可扩展性和表现力方面取得了重大进展,例如使用诱导点和神经网络内核近似。在本文中,我们提出了诱导高斯流程网络(IGN),这是一个简单的框架,用于同时学习特征空间以及诱导点。尤其是诱导点直接在特征空间中学习,从而实现了复杂结构域的无缝表示,同时还促进了基于可扩展梯度的学习方法。我们考虑回归和(二进制)分类任务,并报告现实世界数据集的实验结果,表明IGNS对最新方法提供了重大进展。我们还展示了如何使用IGN来使用神经网络体系结构有效地对复杂域进行建模。

Gaussian processes (GPs) are powerful but computationally expensive machine learning models, requiring an estimate of the kernel covariance matrix for every prediction. In large and complex domains, such as graphs, sets, or images, the choice of suitable kernel can also be non-trivial to determine, providing an additional obstacle to the learning task. Over the last decade, these challenges have resulted in significant advances being made in terms of scalability and expressivity, exemplified by, e.g., the use of inducing points and neural network kernel approximations. In this paper, we propose inducing Gaussian process networks (IGN), a simple framework for simultaneously learning the feature space as well as the inducing points. The inducing points, in particular, are learned directly in the feature space, enabling a seamless representation of complex structured domains while also facilitating scalable gradient-based learning methods. We consider both regression and (binary) classification tasks and report on experimental results for real-world data sets showing that IGNs provide significant advances over state-of-the-art methods. We also demonstrate how IGNs can be used to effectively model complex domains using neural network architectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源