论文标题
使用Viterbi地图匹配算法的重力辅助导航
Gravity aided navigation using Viterbi map matching algorithm
论文作者
论文摘要
在GNSS贬低的环境中,帮助车辆的惯性导航系统(INS)对于减少由传感器错误引起的累积导航漂移至关重要(例如偏差和噪声)。一种潜在的解决方案是将重力测量作为辅助源。这些测量值与地球重力的地理参考图相匹配,以估计车辆的位置。在本文中,我们使用隐藏的马尔可夫模型(HMM)提出了一种新的地图匹配问题的公式。具体而言,我们将地图的空间细胞视为HMM的隐藏状态,并呈现Viterbi样式算法,以估计最可能的状态序列,即最有可能的媒介物位置序列,从而导致观察到的重力测量结果。使用现实的重力图,我们在导航方案中演示了Viterbi映射匹配算法的准确性,并说明了与现有方法相比其稳健性。
In GNSS-denied environments, aiding a vehicle's inertial navigation system (INS) is crucial to reducing the accumulated navigation drift caused by sensor errors (e.g. bias and noise). One potential solution is to use measurements of gravity as an aiding source. The measurements are matched to a geo-referenced map of Earth's gravity in order to estimate the vehicle's position. In this paper, we propose a novel formulation of the map matching problem using a hidden Markov model (HMM). Specifically, we treat the spatial cells of the map as the hidden states of the HMM and present a Viterbi style algorithm to estimate the most likely sequence of states, i.e. most likely sequence of vehicle positions, that results in the sequence of observed gravity measurements. Using a realistic gravity map, we demonstrate the accuracy of our Viterbi map matching algorithm in a navigation scenario and illustrate its robustness compared to existing methods.