论文标题
光滑表面异常形态的特殊分裂的数值特性
Numerical properties of exceptional divisors of birational morphisms of smooth surfaces
论文作者
论文摘要
我们对有效分隔线的数值特性进行了非常详细的分析,其支持包含在光滑的射射线表面的异常形态的特殊基因座中。作为一种应用,我们将Miyaoka的不等式扩展到具有非负Kodaira尺寸的投射正常表面上的规范奇异性数量到非最小情况,获得的结果比Megyesi和Langer的已知扩展略好。
We make a very detailed analysis of the numerical properties of effective divisors whose support is contained in the exceptional locus of a birational morphism of smooth projective surfaces. As an application we extend Miyaoka's inequality on the number of canonical singularities on a projective normal surface with non-negative Kodaira dimension to the non minimal case, obtaining a slightly better result than known extensions by Megyesi and Langer.