论文标题

预测高速公路车道改变的操作:机器和集合学习算法的基准分析

Predicting highway lane-changing maneuvers: A benchmark analysis of machine and ensemble learning algorithms

论文作者

Khelfa, Basma, Ba, Ibrahima, Tordeux, Antoine

论文摘要

理解和预测高速公路车道变化的操作对于驱动建模及其自动化至关重要。如今,开发基于数据的车道改变决策算法已经完全扩展。我们使用欧洲两车道高速公路的轨迹数据在本文中以凭经验进行了不同的机器和集合学习分类技术与基于Mobil规则的模型进行比较。该分析依赖于多达二十四个时空变量的瞬时测量,以及当前和相邻车道上的四个相邻车辆。主要组成部分和逻辑分析的初步描述性研究允许识别打算驱动器更改车道的主要变量。我们预测两种类型的可支配车道变化操作:超越(从慢速到快车道)和折叠(从快速到慢速车道)。使用总数,车道和车道保存错误以及相关的接收器操作特征曲线对预测精度进行量化。基准分析包括逻辑模型,线性判别,决策树,幼稚的贝叶斯分类器,支持向量机,神经网络机器学习算法以及多达十个袋装和堆叠合奏集合学习元数据。如果基于规则的模型提供了有限的预测准确性,则基于数据的算法没有建模偏差,可以进行重大的预测改进。交叉验证表明,选定的神经网络和堆叠算法允许从单个观察结果折叠和超越操作中预测,最多可以提前四秒钟,高精度。

Understanding and predicting highway lane-change maneuvers is essential for driving modeling and its automation. The development of data-based lane-changing decision-making algorithms is nowadays in full expansion. We compare empirically in this article different machine and ensemble learning classification techniques to the MOBIL rule-based model using trajectory data of European two-lane highways. The analysis relies on instantaneous measurements of up to twenty-four spatial-temporal variables with the four neighboring vehicles on current and adjacent lanes. Preliminary descriptive investigations by principal component and logistic analyses allow identifying main variables intending a driver to change lanes. We predict two types of discretionary lane-change maneuvers: overtaking (from the slow to the fast lane) and fold-down (from the fast to the slow lane). The prediction accuracy is quantified using total, lane-changing and lane-keeping errors and associated receiver operating characteristic curves. The benchmark analysis includes logistic model, linear discriminant, decision tree, naïve Bayes classifier, support vector machine, neural network machine learning algorithms, and up to ten bagging and stacking ensemble learning meta-heuristics. If the rule-based model provides limited predicting accuracy, the data-based algorithms, devoid of modeling bias, allow significant prediction improvements. Cross validations show that selected neural networks and stacking algorithms allow predicting from a single observation both fold-down and overtaking maneuvers up to four seconds in advance with high accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源