论文标题

量子断层树

Quantum Fault Trees

论文作者

Silva, Gabriel San Martin, Parhizkar, Tarannom, Droguett, Enrique Lopez

论文摘要

故障树分析是一种在复杂工程系统的风险和可靠性分析中广泛使用的技术,鉴于其演绎性质和相对简单的解释。在断层树中,事件通常由指示事件是否发生的二进制变量表示,传统上与​​值1和0分别相关联。使用逻辑门将不同的事件链接在一起,建模子系统或系统对其基本组件可能具有的依赖关系。在这项研究中,利用量子计算提出了一种新的方法,将传统的断层树编码为量子算法。该量子故障树方法使用量子位来表示基本事件,从而有效地将原始故障树编码为量子电路。所得量子电路的执行表示对故障树的完整模拟,并且可以使用多个执行来计算整个系统的失败概率。在描绘动态定位系统的案例研究上测试了所提出的方法。结果证明,基于量子的提议方法能够通过模拟有效地获得动态定位失败概率,从而为该地区的未来研究打开了有希望的机会。

Fault tree analysis is a technique widely used in risk and reliability analysis of complex engineering systems given its deductive nature and relatively simple interpretation. In a fault tree, events are usually represented by a binary variable that indicates whether an event occurs or not, traditionally associated with the values 1 and 0, respectively. Different events are linked together using logical gates, modelling the dependencies that a subsystem or system may have over its basic components. In this study, quantum computing is leveraged to propose a novel approach to encode a traditional fault tree into a quantum algorithm. This quantum fault tree method uses quantum bits to represent basic events, effectively encoding the original fault tree into a quantum circuit. The execution of the resulting quantum circuit represents a full simulation of the fault tree, and multiple executions can be utilized to compute the failure probability of the whole system. The proposed approach is tested on a case study portraying a dynamic positioning system. Results verify that the quantum-based proposed approach is able to effectively obtain the dynamic positioning failure probability through simulation, opening promising opportunities for future investigations in the area.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源