论文标题
反事实学习,以实用程序最大化查询自动完成
Counterfactual Learning To Rank for Utility-Maximizing Query Autocompletion
论文作者
论文摘要
查询自动完成的常规方法旨在预测用户将从列表中选择哪些完成的查询。这种方法的缺点是,用户通常不知道哪个查询将在当前信息检索系统上提供最佳的检索性能,这意味着训练用于模拟用户行为的任何查询自动完成方法都可以导致次优的查询建议。为了克服这一限制,我们提出了一种新方法,该方法明确优化了下游检索性能的查询建议。我们将其作为排名一组排名的问题,其中每个查询建议都由其产生的下游项目排名表示。然后,我们提出了一种学习方法,该方法通过其项目排名的质量来对查询建议进行排名。该算法基于一种反事实学习方法,该方法能够利用对项目(例如,点击,购买)的反馈来通过无偏见的估计器来评估查询建议,从而避免了用户写入或选择最佳查询的假设。我们为拟议方法建立理论支持,并提供学习理论保证。我们还对公开可用的数据集提出了经验结果,并使用来自在线购物商店的数据演示了现实世界的适用性。
Conventional methods for query autocompletion aim to predict which completed query a user will select from a list. A shortcoming of this approach is that users often do not know which query will provide the best retrieval performance on the current information retrieval system, meaning that any query autocompletion methods trained to mimic user behavior can lead to suboptimal query suggestions. To overcome this limitation, we propose a new approach that explicitly optimizes the query suggestions for downstream retrieval performance. We formulate this as a problem of ranking a set of rankings, where each query suggestion is represented by the downstream item ranking it produces. We then present a learning method that ranks query suggestions by the quality of their item rankings. The algorithm is based on a counterfactual learning approach that is able to leverage feedback on the items (e.g., clicks, purchases) to evaluate query suggestions through an unbiased estimator, thus avoiding the assumption that users write or select optimal queries. We establish theoretical support for the proposed approach and provide learning-theoretic guarantees. We also present empirical results on publicly available datasets, and demonstrate real-world applicability using data from an online shopping store.