论文标题

如何通过二次不受约束的二进制优化近似任何目标函数

How to Approximate any Objective Function via Quadratic Unconstrained Binary Optimization

论文作者

Gabor, Thomas, Rosenfeld, Marian Lingsch, Feld, Sebastian, Linnhoff-Popien, Claudia

论文摘要

二次无约束的二进制优化(QUBO)已成为使用量子计算机(即用于量子近似优化算法(QAOA)和量子退火(QA)的量子计算机的标准格式。我们提出了一种方法,可以通过(i)将它们近似为多项式,然后(ii)将任何多项式转换为QUBO,将几乎任意问题转换为QUBO。我们在两个示例问题(削减比率和逻辑回归)上展示了方法的用法。

Quadratic unconstrained binary optimization (QUBO) has become the standard format for optimization using quantum computers, i.e., for both the quantum approximate optimization algorithm (QAOA) and quantum annealing (QA). We present a toolkit of methods to transform almost arbitrary problems to QUBO by (i) approximating them as a polynomial and then (ii) translating any polynomial to QUBO. We showcase the usage of our approaches on two example problems (ratio cut and logistic regression).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源