论文标题
基于上下文感知的SIM到现实改编的人类机器人共享手术机器人的控制
Human-Robot Shared Control for Surgical Robot Based on Context-Aware Sim-to-Real Adaptation
论文作者
论文摘要
人类机器人共享的控制,整合了人类和机器人的优势,是促进有效手术手术的有效方法。从演示(LFD)技术中学习可用于自动化一些手术子任务,以构建共享控制框架。但是,机器人需要足够的数据才能学习操作。使用手术模拟器收集数据是一种资源要求的方法。通过SIM到现实的改编,可以将模拟器中学到的操作转移到物理机器人中。为此,我们提出了一种SIM到现实的适应方法,以构建用于机器人手术的人类机器人共享的控制框架。 在本文中,使用LFD方法从模拟器生成所需的轨迹,而动态运动原始方法(DMP)方法用于将所需轨迹从模拟器传递到物理机器人平台。此外,开发了一种角色适应机制,以便机器人可以根据神经网络模型预测的手术操作环境来调整其作用。拟议框架的有效性在DA Vinci Research套件(DVRK)上得到了验证。用户研究的结果表明,有了自适应人像共享控制框架,遥控器的路径长度,总握把数量和任务完成时间可以显着减少。所提出的方法通过远距离运行优于传统的手动控制。
Human-robot shared control, which integrates the advantages of both humans and robots, is an effective approach to facilitate efficient surgical operation. Learning from demonstration (LfD) techniques can be used to automate some of the surgical subtasks for the construction of the shared control framework. However, a sufficient amount of data is required for the robot to learn the manoeuvres. Using a surgical simulator to collect data is a less resource-demanding approach. With sim-to-real adaptation, the manoeuvres learned from a simulator can be transferred to a physical robot. To this end, we propose a sim-to-real adaptation method to construct a human-robot shared control framework for robotic surgery. In this paper, a desired trajectory is generated from a simulator using LfD method, while dynamic motion primitives (DMPs) based method is used to transfer the desired trajectory from the simulator to the physical robotic platform. Moreover, a role adaptation mechanism is developed such that the robot can adjust its role according to the surgical operation contexts predicted by a neural network model. The effectiveness of the proposed framework is validated on the da Vinci Research Kit (dVRK). Results of the user studies indicated that with the adaptive human-robot shared control framework, the path length of the remote controller, the total clutching number and the task completion time can be reduced significantly. The proposed method outperformed the traditional manual control via teleoperation.