论文标题
基于生成的零拍模型
Deconstructed Generation-Based Zero-Shot Model
论文作者
论文摘要
对广义零射学习(GZSL)的最新研究主要集中在基于生成的方法上。但是,当前的文献忽略了这些方法的基本原理,并以复杂的方式取得了有限的进展。在本文中,我们旨在解构发电机分类器框架,并为其改进和扩展提供指导。我们首先将生成器的未见类分布分解为类别级别和实例级别的分布。通过分析这两种分布在解决GZSL问题中的作用,我们概括了基于世代的方法的重点,并强调了(i)属性在生成器学习中属性概括的重要性以及(ii)具有部分偏见的数据的独立分类器学习。我们提出了一种基于此分析的简单方法,该方法在四个公共GZSL数据集上胜过SOTA,证明了我们解构的有效性。此外,即使没有生成模型,我们提出的方法仍然有效,这代表了简化生成器分类器结构的步骤。我们的代码可在\ url {https://github.com/cdb342/dgz}上找到。
Recent research on Generalized Zero-Shot Learning (GZSL) has focused primarily on generation-based methods. However, current literature has overlooked the fundamental principles of these methods and has made limited progress in a complex manner. In this paper, we aim to deconstruct the generator-classifier framework and provide guidance for its improvement and extension. We begin by breaking down the generator-learned unseen class distribution into class-level and instance-level distributions. Through our analysis of the role of these two types of distributions in solving the GZSL problem, we generalize the focus of the generation-based approach, emphasizing the importance of (i) attribute generalization in generator learning and (ii) independent classifier learning with partially biased data. We present a simple method based on this analysis that outperforms SotAs on four public GZSL datasets, demonstrating the validity of our deconstruction. Furthermore, our proposed method remains effective even without a generative model, representing a step towards simplifying the generator-classifier structure. Our code is available at \url{https://github.com/cdb342/DGZ}.