论文标题

通过元重量重量重量的命名实体识别的强大自我增强

Robust Self-Augmentation for Named Entity Recognition with Meta Reweighting

论文作者

Wu, Linzhi, Xie, Pengjun, Zhou, Jie, Zhang, Meishan, Ma, Chunping, Xu, Guangwei, Zhang, Min

论文摘要

自我实践最近受到了越来越多的研究兴趣,以改善低资源场景中的指定实体识别(NER)表现。令牌替代和混合是NER的两种可行的异质自我实践技术,可以通过某些专业工作来实现有效的性能。明显的是,自我实践可能会引入潜在的嘈杂的增强数据。先前的研究主要诉诸基于启发式规则的约束,以分别减少特定自我实践方法的噪声。在本文中,我们为NER重新审视了这两种典型的自我实践方法,并提出了一种统一的元培养策略,以实现自然整合。我们的方法很容易扩展,在特定的自我实践方法上施加了很少的努力。对不同中国和英语NER基准测试的实验表明,我们的令牌替代和混合方法及其集成可以实现有效的性能。根据元培养机制,我们可以在不额外的努力的情况下增强自我夸大技术的优势。

Self-augmentation has received increasing research interest recently to improve named entity recognition (NER) performance in low-resource scenarios. Token substitution and mixup are two feasible heterogeneous self-augmentation techniques for NER that can achieve effective performance with certain specialized efforts. Noticeably, self-augmentation may introduce potentially noisy augmented data. Prior research has mainly resorted to heuristic rule-based constraints to reduce the noise for specific self-augmentation methods individually. In this paper, we revisit these two typical self-augmentation methods for NER, and propose a unified meta-reweighting strategy for them to achieve a natural integration. Our method is easily extensible, imposing little effort on a specific self-augmentation method. Experiments on different Chinese and English NER benchmarks show that our token substitution and mixup method, as well as their integration, can achieve effective performance improvement. Based on the meta-reweighting mechanism, we can enhance the advantages of the self-augmentation techniques without much extra effort.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源