论文标题

在bidirectiond的下降量中的可及性

Reachability in Bidirected Pushdown VASS

论文作者

Ganardi, Moses, Majumdar, Rupak, Pavlogiannis, Andreas, Schütze, Lia, Zetzsche, Georg

论文摘要

带有状态(PVAS)的下降矢量加法系统通过下降储存扩展了向量加法系统的模型。如果每个过渡(按/弹出符号或修改计数器)的相反过渡会逆转效果,则据说pvass是\ emph {bidirected}。在许多模型中自然出现了双向性。它也可以看作是对可达性的过度应用。我们表明,\ emph {bidirected} pvass的可及性问题在Ackermann时间是可决定的,并且对于任何固定尺寸而言,原始递归。对于一维双向PVAS的特殊情况,我们表明可及以$ \ MATHSF {PSPACE} $,实际上在多项式时间内,如果堆栈是多种方面限制的。我们的结果与\ emph {定向}的设置相反,在\ emph {有向性}设置中,可及性的可决定性已经是一维pvass的长期开放问题,并且有一个$ \ mathsf {pspace} $ - 对于一维pvass的下键已经限制。 双向(无状态)案例中的可及性关系是$ \ mathbb {n}^d $的一致性。我们的上限比一致性利用饱和技术。特别是,我们展示了有限的许多矢量对产生的一致性的半线性表示的新颖基本时间结构。在一维pvass的情况下,我们在有限大小的计数器上采用饱和程序。 我们使用$ \ mathsf {tower} $补充上限 - 任意维度的硬度结果和$ k $ - $ \ mathsf {expspace} $ dimension in Dimension $ 2K+6 $使用Lazić和Totzke的技术实现迭代式调料。

A pushdown vector addition system with states (PVASS) extends the model of vector addition systems with a pushdown store. A PVASS is said to be \emph{bidirected} if every transition (pushing/popping a symbol or modifying a counter) has an accompanying opposite transition that reverses the effect. Bidirectedness arises naturally in many models; it can also be seen as a overapproximation of reachability. We show that the reachability problem for \emph{bidirected} PVASS is decidable in Ackermann time and primitive recursive for any fixed dimension. For the special case of one-dimensional bidirected PVASS, we show reachability is in $\mathsf{PSPACE}$, and in fact in polynomial time if the stack is polynomially bounded. Our results are in contrast to the \emph{directed} setting, where decidability of reachability is a long-standing open problem already for one dimensional PVASS, and there is a $\mathsf{PSPACE}$-lower bound already for one-dimensional PVASS with bounded stack. The reachability relation in the bidirected (stateless) case is a congruence over $\mathbb{N}^d$. Our upper bounds exploit saturation techniques over congruences. In particular, we show novel elementary-time constructions of semilinear representations of congruences generated by finitely many vector pairs. In the case of one-dimensional PVASS, we employ a saturation procedure over bounded-size counters. We complement our upper bound with a $\mathsf{TOWER}$-hardness result for arbitrary dimension and $k$-$\mathsf{EXPSPACE}$ hardness in dimension $2k+6$ using a technique by Lazić and Totzke to implement iterative exponentiations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源