论文标题

相互无偏的测量,hadamard矩阵和超密集编码

Mutually Unbiased Measurements, Hadamard Matrices, and Superdense Coding

论文作者

Farkas, Máté, Kaniewski, Jędrzej, Nayak, Ashwin

论文摘要

相互无偏基的基础(MUB)是复杂的希尔伯特空间上的高度对称基础,相应的等级-1投影测量在量子信息理论中无处不在。在这项工作中,我们研究了最近引入的称为相互无偏测量(妈妈)的MUB的概括。这些测量值继承了MUB的互补性的必要特性,但是不再需要希尔伯特空间维度来匹配结果的数量。这种操作互补性属性使妈妈对独立于设备的量子信息处理非常有用。已经表明,妈妈严格比MUB更一般。在这项工作中,我们提供了完整的证明妈妈的表征,即直接的MUB总和。然后,我们继续构建不是直接的MUB总和的新例子。这些结构的关键技术工具是与Quaternionic Hadamard矩阵的对应关系,该矩阵使我们能够将这些矩阵的已知示例映射到不是直接MUBS总和的妈妈。此外,我们表明 - 与Mubs形成鲜明对比的是,固定结果编号的妈妈数量是无限的。接下来,我们专注于在量子通信中使用妈妈。我们演示了任何具有D结果的妈妈如何定义D维超密度编码方案。我们使用不是直接的MUB总和,我们反驳了由于Nayak和Yuen而引起的一个最近的猜想,这些猜想是关于无限多个维度的超密集编码的刚性。反驳中产生的超密集编码方案表明,如何以迄今未知的方式使用共同的纠缠。

Mutually unbiased bases (MUBs) are highly symmetric bases on complex Hilbert spaces, and the corresponding rank-1 projective measurements are ubiquitous in quantum information theory. In this work, we study a recently introduced generalization of MUBs called mutually unbiased measurements (MUMs). These measurements inherit the essential property of complementarity from MUBs, but the Hilbert space dimension is no longer required to match the number of outcomes. This operational complementarity property renders MUMs highly useful for device-independent quantum information processing. It has been shown that MUMs are strictly more general than MUBs. In this work we provide a complete proof of the characterization of MUMs that are direct sums of MUBs. We then proceed to construct new examples of MUMs that are not direct sums of MUBs. A crucial technical tool for these construction is a correspondence with quaternionic Hadamard matrices, which allows us to map known examples of such matrices to MUMs that are not direct sums of MUBs. Furthermore, we show that -- in stark contrast with MUBs -- the number of MUMs for a fixed outcome number is unbounded. Next, we focus on the use of MUMs in quantum communication. We demonstrate how any pair of MUMs with d outcomes defines a d-dimensional superdense coding protocol. Using MUMs that are not direct sums of MUBs, we disprove a recent conjecture due to Nayak and Yuen on the rigidity of superdense coding for infinitely many dimensions. The superdense coding protocols arising in the refutation reveal how shared entanglement may be used in a manner heretofore unknown.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源