论文标题

部分可观测时空混沌系统的无模型预测

Disjoint isomorphic balanced clique subdivisions

论文作者

Fernández, Irene Gil, Hyde, Joseph, Liu, Hong, Pikhurko, Oleg, Wu, Zhuo

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

A thoroughly studied problem in Extremal Graph Theory is to find the best possible density condition in a host graph $G$ for guaranteeing the presence of a particular subgraph $H$ in $G$. One such classical result, due to Bollobás and Thomason, and independently Komlós and Szemerédi, states that average degree $O(k^2)$ guarantees the existence of a $K_k$-subdivision. We study two directions extending this result. On the one hand, Verstraëte conjectured that the quadratic bound $O(k^2)$ would guarantee already two vertex-disjoint isomorphic copies of a $K_k$-subdivision. On the other hand, Thomassen conjectured that for each $k \in \mathbb{N}$ there is some $d = d(k)$ such that every graph with average degree at least $d$ contains a balanced subdivision of $K_k$, that is, a copy of $K_k$ where the edges are replaced by paths of equal length. Recently, Liu and Montgomery confirmed Thomassen's conjecture, but the optimal bound on $d(k)$ remains open. In this paper, we show that the quadratic bound $O(k^2)$ suffices to force a balanced $K_k$-subdivision. This gives the optimal bound on $d(k)$ needed in Thomassen's conjecture and implies the existence of $O(1)$ many vertex-disjoint isomorphic $K_k$-subdivisions, confirming Verstraëte's conjecture in a strong sense.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源