论文标题
在社交媒体上进行自杀评估的过程知识学习
Process Knowledge-infused Learning for Suicidality Assessment on Social Media
论文作者
论文摘要
改善深度学习算法的表现和自然语言解释是人类在现实世界中采用的优先事项。在医疗保健等多个领域中,这种技术具有通过大规模提供质量援助来减轻人类负担的巨大潜力。但是,当前的方法依赖于从数据预测标签的传统管道,因此完全忽略了用于获得标签的过程和准则。此外,在数据的事后解释是使用可解释的AI(XAI)模型标记预测的数据,尽管对计算机科学家来说令人满意,但由于缺乏对人类理解的概念的解释,但由于缺乏对过程的解释,因此对最终用户有很多不希望的需求。我们\ textIt {介绍},\ textit {formorize}和\ textit {develop}一种新颖的人工智能(a)范式 - 过程知识知识知识学习(PK-il)。 PK-IL利用结构化的过程知识,该知识明确解释了对最终用户有意义的基本预测过程。定性人类评估通过0.72的注释者协议确认,人类对预测有所了解。 PK-IL还与最先进的基线(SOTA)基线一起竞争。
Improving the performance and natural language explanations of deep learning algorithms is a priority for adoption by humans in the real world. In several domains, such as healthcare, such technology has significant potential to reduce the burden on humans by providing quality assistance at scale. However, current methods rely on the traditional pipeline of predicting labels from data, thus completely ignoring the process and guidelines used to obtain the labels. Furthermore, post hoc explanations on the data to label prediction using explainable AI (XAI) models, while satisfactory to computer scientists, leave much to be desired to the end-users due to lacking explanations of the process in terms of human-understandable concepts. We \textit{introduce}, \textit{formalize}, and \textit{develop} a novel Artificial Intelligence (A) paradigm -- Process Knowledge-infused Learning (PK-iL). PK-iL utilizes a structured process knowledge that explicitly explains the underlying prediction process that makes sense to end-users. The qualitative human evaluation confirms through a annotator agreement of 0.72, that humans are understand explanations for the predictions. PK-iL also performs competitively with the state-of-the-art (SOTA) baselines.