论文标题

替代辅助进化多目标优化应用于压力摆动吸附系统

Surrogate Assisted Evolutionary Multi-objective Optimisation applied to a Pressure Swing Adsorption system

论文作者

Stander, Liezl, Woolway, Matthew, Van Zyl, Terence L.

论文摘要

由于这些现实世界系统的复杂性,化学工厂的设计和优化已被证明具有挑战性。所得的复杂性转化为这些系统的数学公式和仿真模型的高计算成本。研究说明了在优化过程中使用机器学习替代模型作为计算昂贵模型的替代品的好处。本文将最近的研究扩展到优化化学厂的设计和运行。该研究进一步探讨了原始植物设计和优化问题的更复杂变体中的替代辅助遗传算法(SA-GA),例如包含平行和反馈成分。在这项研究中提出的原始算法的新颖扩展是替代辅助NSGA- \ romannum {2}(SA-NSGA),已在流行的文献案例中进行了测试,即压力摆动吸附(PSA)系统。我们进一步提供了广泛的实验,比较了各种元元素优化技术,并将众多的机器学习模型作为替代物进行了比较。两组系统的结果都说明了使用遗传算法作为复杂化学植物系统设计和对单目标和多目标方案优化的优化框架的好处。我们确认,随机森林替代辅助进化算法可以缩放到具有平行和反馈成分的越来越复杂的化学系统。我们进一步发现,将遗传算法框架与机器学习替代模型作为长期运行的模拟模型的替代品相结合,可以提高计算效率,从而提高了复杂性示例的1.7-1.84倍的速度,而压力摆动吸附系统的加速速度为2.7倍。

Chemical plant design and optimisation have proven challenging due to the complexity of these real-world systems. The resulting complexity translates into high computational costs for these systems' mathematical formulations and simulation models. Research has illustrated the benefits of using machine learning surrogate models as substitutes for computationally expensive models during optimisation. This paper extends recent research into optimising chemical plant design and operation. The study further explores Surrogate Assisted Genetic Algorithms (SA-GA) in more complex variants of the original plant design and optimisation problems, such as the inclusion of parallel and feedback components. The novel extension to the original algorithm proposed in this study, Surrogate Assisted NSGA-\Romannum{2} (SA-NSGA), was tested on a popular literature case, the Pressure Swing Adsorption (PSA) system. We further provide extensive experimentation, comparing various meta-heuristic optimisation techniques and numerous machine learning models as surrogates. The results for both sets of systems illustrate the benefits of using Genetic Algorithms as an optimisation framework for complex chemical plant system design and optimisation for both single and multi-objective scenarios. We confirm that Random Forest surrogate assisted Evolutionary Algorithms can be scaled to increasingly complex chemical systems with parallel and feedback components. We further find that combining a Genetic Algorithm framework with Machine Learning Surrogate models as a substitute for long-running simulation models yields significant computational efficiency improvements, 1.7 - 1.84 times speedup for the increased complexity examples and a 2.7 times speedup for the Pressure Swing Adsorption system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源