论文标题
耐受性对于稳定性是必要的:单峰掉期Schelling游戏
Tolerance is Necessary for Stability: Single-Peaked Swap Schelling Games
论文作者
论文摘要
大都市地区的住宅隔离是可以在世界范围内观察到的一种现象。最近,通过游戏理论模型对此进行了调查。在那里,两种类型的自私剂配备了单调实用程序功能,如果代理具有更多相同型邻居,则可以确保更高的实用程序。代理商从策略上选择其位置在给定图表上,该图形是住宅区以最大化其实用程序。但是,社会学民意调查表明,现实世界中的代理人实际上是赞成混合型社区的,因此应通过非单调实用程序功能进行建模。为了解决这个问题,我们研究了具有单峰实用程序功能的交换Schelling游戏。我们的主要发现是,公差,即支持五十个社区或少数群体的代理人,对于几乎规则或两部分图上的平衡存在是必要的。关于平衡的质量,我们得出了(几乎)紧密的范围,范围是无政府状态的价格和稳定价格。特别是,我们表明后者在两分和几乎常规图上是恒定的。
Residential segregation in metropolitan areas is a phenomenon that can be observed all over the world. Recently, this was investigated via game-theoretic models. There, selfish agents of two types are equipped with a monotone utility function that ensures higher utility if an agent has more same-type neighbors. The agents strategically choose their location on a given graph that serves as residential area to maximize their utility. However, sociological polls suggest that real-world agents are actually favoring mixed-type neighborhoods, and hence should be modeled via non-monotone utility functions. To address this, we study Swap Schelling Games with single-peaked utility functions. Our main finding is that tolerance, i.e., agents favoring fifty-fifty neighborhoods or being in the minority, is necessary for equilibrium existence on almost regular or bipartite graphs. Regarding the quality of equilibria, we derive (almost) tight bounds on the Price of Anarchy and the Price of Stability. In particular, we show that the latter is constant on bipartite and almost regular graphs.