论文标题
部分可观测时空混沌系统的无模型预测
A Database of Calabi-Yau Orientifolds and the Size of D3-Tadpoles
论文作者
论文摘要
Kreuzer和Skarke对4D反射性多面有的分类允许系统地构造卡拉比Yau Hypersurfaces,作为细,常规的,星形三角剖分(FRSTS)。到目前为止,这种几何景观的广阔程度在很大程度上尚未探索。在本文中,我们从具有hodge数字的此类超曲面的全体形态反射构建calabi-yau方向上,$ h^{1,1} \ leq 12 $。特别是,我们为$ h^{1,1} \ leq 7 $计算所有有利的FRST的方向配置,而每对hodge编号随机采样三角形,最高为$ h^{1,1} = 12 $。我们在这些方向的calabi-yaus上找到了明确的字符串压缩,D3付费贡献来自O $ p $平面的贡献,随着复杂结构和Kähler模量的数量线性增长。我们进一步考虑通过Whitney Branes取消非本地D7-TADPOLE。我们认为,与传统的$ \ mathrm {so}(8)$堆栈相比,这导致了总D3 tadpole的显着增强,并在O7-planes上使用$(4+4)$ d7-branes。特别是,在转动WorldVulume通量之前,我们发现该课程中最大的D3-TADPOLE发生在Calabi-yau三倍以$(H^{1,1} _ {+},H^{1,2} _ {1,2} _ { - } _ { - } _ { - 11,491)=(11,491)$的情况下发生。 $ | q _ {\ text {d3}} | = 504 $用于本地D7案例和$ | q _ {\ text {d3}} | = 6,664 $,用于非本地惠特尼麸皮盒,似乎足够大以取消tadpoles并允许tadpoles并允许易于稳定所有复杂的结构Moduli Moduli。我们的数据可在http://github.com/andreasschachner/cy_orientifold_database下公开获取。
The classification of 4D reflexive polytopes by Kreuzer and Skarke allows for a systematic construction of Calabi-Yau hypersurfaces as fine, regular, star triangulations (FRSTs). Until now, the vastness of this geometric landscape remains largely unexplored. In this paper, we construct Calabi-Yau orientifolds from holomorphic reflection involutions of such hypersurfaces with Hodge numbers $h^{1,1}\leq 12$. In particular, we compute orientifold configurations for all favourable FRSTs for $h^{1,1}\leq 7$, while randomly sampling triangulations for each pair of Hodge numbers up to $h^{1,1}=12$. We find explicit string compactifications on these orientifolded Calabi-Yaus for which the D3-charge contribution coming from O$p$-planes grows linearly with the number of complex structure and Kähler moduli. We further consider non-local D7-tadpole cancellation through Whitney branes. We argue that this leads to a significant enhancement of the total D3-tadpole as compared to conventional $\mathrm{SO}(8)$ stacks with $(4+4)$ D7-branes on top of O7-planes. In particular, before turning-on worldvolume fluxes, we find that the largest D3-tadpole in this class occurs for Calabi-Yau threefolds with $(h^{1,1}_{+},h^{1,2}_{-})=(11,491)$ with D3-brane charges $|Q_{\text{D3}}|=504$ for the local D7 case and $|Q_{\text{D3}}|=6,664$ for the non-local Whitney branes case, which appears to be large enough to cancel tadpoles and allow fluxes to stabilise all complex structure moduli. Our data is publicly available under http://github.com/AndreasSchachner/CY_Orientifold_database .