论文标题

高斯 - 骨网曲率的非平凡空间行为迅速旋转的kerr黑洞不变

Nontrivial spatial behavior of the Gauss-Bonnet curvature invariant of rapidly-rotating Kerr black holes

论文作者

Hod, Shahar

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The Gauss-Bonnet curvature invariant has attracted the attention of physicists and mathematicians over the years. In particular, it has recently been proved that black holes can support external matter configurations that are non-minimally coupled to the Gauss-Bonnet invariant of the curved spacetime. Motivated by this physically interesting behavior of black holes in Einstein-Gauss-Bonnet theories, we present a detailed {\it analytical} study of the physical and mathematical properties of the Gauss-Bonnet curvature invariant ${\cal G}_{\text{Kerr}}(r,\cosθ;a/M)$ of spinning Kerr black holes in the spacetime region outside the horizon. Interestingly, we prove that, for all spinning Kerr spacetimes in the physically allowed regime $a/M\in[0,1]$, the spin-dependent maximum curvature of the Gauss-Bonnet invariant is attained at the equator of the black-hole surface. Intriguingly, we reveal that the location of the global minimum of the Gauss-Bonnet invariant has a highly non-trivial functional dependence on the black-hole rotation parameter: (i) For Kerr black holes in the dimensionless slow-rotation $a/M<(a/M)^{-}_{\text{crit}}=1/2$ regime, the Gauss-Bonnet curvature invariant attains its global minimum asymptotically at spatial infinity, (ii) for black holes in the intermediate spin regime $1/2=(a/M)^{-}_{\text{crit}}\leq a/M\leq(a/M)^{+}_{\text{crit}}= \sqrt{\Big\{{{7+\sqrt{7}\cos\Big[3^{-1}\arctan\big(3\sqrt{3}\big)\Big]- \sqrt{21}\sin\Big[3^{-1}\arctan\big(3\sqrt{3}\big)\Big]\Big\}}/12}}$, the global minima are located at the black-hole poles, and (iii) Kerr black holes in the super-critical regime $a/M>(a/M)^{+}_{\text{crit}}$ are characterized by a non-trivial functional behavior of the Gauss-Bonnet curvature invariant along the black-hole horizon with a spin-dependent polar angle for the global minimum point.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源