论文标题

黑洞的霍金态量子演变

Quantum evolution of the Hawking state for black holes

论文作者

Giddings, Steven B., Perkins, Julie

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We give a general description of the evolving quantum state of a Schwarzschild black hole, in the quantum field theory approximation. Such a time-dependent description is based on introducing a choice of time slices. We in particular consider slices that smoothly cross the horizon, and introduction of "stationary" such slices simplifies the analysis. This analysis goes beyond standard derivations of Hawking radiation that focus on asymptotic excitations, and in particular gives an evolving state that is regular at the horizon, with no explicit transplanckian dependence, and that can in principle be generalized to incorporate interacting fields. It is also expected to be useful in connecting to information-theoretic investigation of black hole evolution. The description of the evolving state depends on the choice of slices as well as coordinates on the slices and mode bases; these choices give different "pictures" analogous to that of Schrödinger. Evolution does have a simpler appearance in an energy eigenbasis, but such a basis is also singular at the horizon; evolution of regular modes has a more complicated appearance, whose properties may be inferred by comparing with the energy eigenbasis. In a regular description, Hawking quanta are produced in a black hole atmosphere, at scales comparable to the horizon size. This approach is also argued to extend to more general asymptotics, such as that of anti de Sitter space. In the latter context, this analysis provides a description of the hamiltonian and evolution of a black hole that may be compared to the large-$N$ dynamics of the proposed dual CFT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源