论文标题
Stueckelberg和Higgs机制:框架和鳞片
Stueckelberg and Higgs Mechanisms: Frames and Scales
论文作者
论文摘要
我们认为Minkowski Space $ {\ Mathbb R}^{3,1} $上的紧凑型量规$ G $的Yang-Mills理论,并使用Stueckelberg和Higgs机制比较了量规玻色子的引入。 Stueckelberg Field $ ϕ $在量规矢量束$ e $上标识为$ g $ frame,$ ϕ $的动力学术语可导致量规玻色子的质量。 Stueckelberg机制通过添加到游戏中的标量字段来扩展到HIGGS机制,描述了$ e $的纤维上度量的标量。因此,我们将Higgs字段以及在量规束的纤维上运行耦合参数。特别是,运行的耦合趋向于零或无穷大,相当于$ g $纤维的无限扩展或其收缩到一个点。我们还讨论了规模连接,时空依赖性的希格斯真空吸尘器以及紧凑的仪表和夸克场,以作为约束的属性。
We consider Yang-Mills theory with a compact gauge group $G$ on Minkowski space ${\mathbb R}^{3,1}$ and compare the introduction of masses of gauge bosons using the Stueckelberg and Higgs mechanisms. The Stueckelberg field $ϕ$ is identified with a $G$-frame on the gauge vector bundle $E$ and the kinetic term for $ϕ$ leads to the mass of the gauge bosons. The Stueckelberg mechanism is extended to the Higgs mechanism by adding to the game a scalar field describing rescaling of metric on fibres of $E$. Thus, we associate Higgs fields as well as running coupling parameters with conformal geometry on fibres of gauge bundles. In particular, a running coupling tending to zero or to infinity is equivalent to an unbounded expansion of $G$-fibres or its contraction to a point. We also discuss scale connection, space-time dependent Higgs vacua and compactly supported gauge and quark fields as an attribute of confinement.