论文标题

安全性的最佳控制运动计划的最佳控制,计算较低的复杂性

Safety-Aware Optimal Control for Motion Planning with Low Computing Complexity

论文作者

Ding, Xuda, Wang, Han, He, Jianping, Chen, Cailian, Margellos, Kostas, Papachristodoulou, Antonis

论文摘要

环境中多个不规则障碍的存在将非凸的限制引入了运动计划的优化,这使得很难处理最佳控制问题。解决此问题的一种有效方法是连续的凸近似(SCA),其中非凸问题被连续解决和解决。但是,这种方法仍然面临两个主要的挑战:i)由于不可行的参考点线性化而引起的不可行; ii)当通过长期计划范围和多个障碍解决最佳控制问题时,多个约束就产生了高计算复杂性。为了克服这些挑战,本文提出了一种节能的安全性控制方法,用于运动计划,以低计算的复杂性并应对这些挑战。具体而言,制定了基于控制屏障功能的线性二次调节器,以确保安全性和能源效率。然后,为避免不可行,提出了具有动态约束选择规则的向后退缩SCA(BRSCA)方法。使用原始二次迭代的动态编程旨在降低计算复杂性。发现BRSCA适用于随时间变化的控制限制。数值模拟和硬件实验会vesseveves BRSCA的效率。模拟表明,与文献中的其他方法相比,BRSCA具有更高的发现可行解决方案的可能性,将计算时间降低约17.4%,能源成本降低了约四倍。

The existence of multiple irregular obstacles in the environment introduces nonconvex constraints into the optimization for motion planning, which makes the optimal control problem hard to handle. One efficient approach to address this issue is Successive Convex Approximation (SCA), where the nonconvex problem is convexified and solved successively. However, this approach still faces two main challenges: I) infeasibility, caused by linearisation about infeasible reference points; ii) high computational complexity incurred by multiple constraints, when solving the optimal control problem with a long planning horizon and multiple obstacles. To overcome these challanges, this paper proposes an energy efficient safetyaware control method for motion planning with low computing complexity and address these challenges. Specifically, a control barrier function-based linear quadratic regulator is formulated for the motion planning to guarantee safety and energy efficiency. Then, to avoid infeasibility, Backward Receding SCA (BRSCA) approach with a dynamic constraints-selection rule is proposed. Dynamic programming with primal-dual iteration is designed to decrease computational complexity. It is found that BRSCA is applicable to time-varying control limits. Numerical simulations and hardware experiments vevify the efficiency of BRSCA. Simulations demonstrates that BRSCA has a higher probability of finding feasible solutions, reduces the computation time by about 17.4% and the energy cost by about four times compared to other methods in the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源