论文标题

机器学习透明度的规范性和描述性方法

Prescriptive and Descriptive Approaches to Machine-Learning Transparency

论文作者

Adkins, David, Alsallakh, Bilal, Cheema, Adeel, Kokhlikyan, Narine, McReynolds, Emily, Mishra, Pushkar, Procope, Chavez, Sawruk, Jeremy, Wang, Erin, Zvyagina, Polina

论文摘要

已经开发了专门的文档技术来传达有关机器学习(ML)系统以及他们所依赖的数据集和模型的关键事实。诸如数据表,事实表和模型卡之类的技术主要采用了描述性方法,提供了有关系统组件的各种详细信息。尽管上述信息对于产品开发人员和外部专家以评估ML系统是否符合其要求至关重要,但其他利益相关者可能会发现它不太可行。特别是,ML工程师需要有关如何减轻潜在缺点以修复错误或改善系统性能的指导。我们调查旨在以规定的方式提供此类指导的方法。我们进一步提出了一种称为方法卡的初步方法,该方法旨在通过提供常用的ML方法和技术的规定性文档来提高ML系统的透明度和可重复性。我们以小物体检测中的示例来展示我们的建议,并演示方法卡如何传达模型开发人员的关键注意事项。我们进一步强调了基于方法卡改善ML工程师的用户体验的途径。

Specialized documentation techniques have been developed to communicate key facts about machine-learning (ML) systems and the datasets and models they rely on. Techniques such as Datasheets, FactSheets, and Model Cards have taken a mainly descriptive approach, providing various details about the system components. While the above information is essential for product developers and external experts to assess whether the ML system meets their requirements, other stakeholders might find it less actionable. In particular, ML engineers need guidance on how to mitigate potential shortcomings in order to fix bugs or improve the system's performance. We survey approaches that aim to provide such guidance in a prescriptive way. We further propose a preliminary approach, called Method Cards, which aims to increase the transparency and reproducibility of ML systems by providing prescriptive documentation of commonly-used ML methods and techniques. We showcase our proposal with an example in small object detection, and demonstrate how Method Cards can communicate key considerations for model developers. We further highlight avenues for improving the user experience of ML engineers based on Method Cards.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源