论文标题

旋转等效的3D对象检测

Rotationally Equivariant 3D Object Detection

论文作者

Yu, Hong-Xing, Wu, Jiajun, Yi, Li

论文摘要

旋转阶段性最近已成为3D深度学习社区中强烈期望的财产。然而,大多数现有的方法都集中在对全局输入旋转的均衡性上,同时忽略了旋转对称性具有自己的空间支持的事实。具体而言,我们考虑3D场景中的对象检测问题,其中一个对象框架应在对象姿势上等效,而与场景运动无关。这表明我们称之为对象级旋转模棱两可的新的所需属性。为了将对象级旋转量比置入3D对象检测器中,我们需要一种机制来提取具有局部对象级空间支持的均值功能,同时能够对跨对象上下文信息进行建模。为此,我们提出了具有旋转均衡悬架设计的均衡对象检测网络(EON),以实现对象级均值。可以将EON应用于现代点云对象检测器,例如votenet和pointrcnn,使它们能够利用场景尺度输入中的对象旋转对称性。我们在室内场景和自动驾驶数据集上进行的实验表明,通过将我们的EON设计插入现有的最新3D对象检测器来获得重大改进。

Rotation equivariance has recently become a strongly desired property in the 3D deep learning community. Yet most existing methods focus on equivariance regarding a global input rotation while ignoring the fact that rotation symmetry has its own spatial support. Specifically, we consider the object detection problem in 3D scenes, where an object bounding box should be equivariant regarding the object pose, independent of the scene motion. This suggests a new desired property we call object-level rotation equivariance. To incorporate object-level rotation equivariance into 3D object detectors, we need a mechanism to extract equivariant features with local object-level spatial support while being able to model cross-object context information. To this end, we propose Equivariant Object detection Network (EON) with a rotation equivariance suspension design to achieve object-level equivariance. EON can be applied to modern point cloud object detectors, such as VoteNet and PointRCNN, enabling them to exploit object rotation symmetry in scene-scale inputs. Our experiments on both indoor scene and autonomous driving datasets show that significant improvements are obtained by plugging our EON design into existing state-of-the-art 3D object detectors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源